Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb 13;979(1):121-6.
doi: 10.1016/0005-2736(89)90531-2.

Interaction of hemin with erythrocyte membranes: alterations in the physical state of the major sialoglycoprotein

Affiliations

Interaction of hemin with erythrocyte membranes: alterations in the physical state of the major sialoglycoprotein

J W Wyse et al. Biochim Biophys Acta. .

Abstract

Hemin has been shown to disrupt erythrocyte membrane skeletal protein-protein interactions, initially those involving band 4.1 (Shaklai et. al. (1986) Biochem. Int. 13, 467-477). We have used electron spin resonance (ESR) spin labels specific for cell-surface carbohydrates, skeletal membrane proteins, or bilayer lipids to find: (1) simultaneous reaction of the protein-specific spin label, MAL-6, which binds to skeletal protein SH residues, and 10 microM hemin suggested that hemin decreased skeletal protein-protein interactions; (2) 10 microM hemin markedly decreased (greater than 60%, P less than 0.001) the rotational motion of spin-labeled erythrocyte membrane cell-surface sialic acid residues, 70% of which are located on the major transmembrane sialoglycoprotein, glycophorin A; and (3) 10 microM hemin caused a small, but significant (P less than 0.02), decrease in the motion of a lipid bilayer specific spin label (5-NS) in the erythrocyte membrane. Since glycophorin A is reportedly linked to the erythrocyte membrane skeletal protein network by band 4.1, it is conceivable that hemin-induced disruption of skeletal protein interactions, particularly those of band 4.1, could subsequently lead to the alterations in the motion of cell-surface sialic acid presented in this report.

PubMed Disclaimer

Publication types

LinkOut - more resources