Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan;39(1):11-19.
doi: 10.1002/gepi.21870. Epub 2014 Nov 4.

Genetic simulation tools for post-genome wide association studies of complex diseases

Affiliations

Genetic simulation tools for post-genome wide association studies of complex diseases

Huann-Sheng Chen et al. Genet Epidemiol. 2015 Jan.

Abstract

Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled "Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases" at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to (1) identify opportunities, challenges, and resource needs for the development and application of genetic simulation models; (2) improve the integration of tools for modeling and analysis of simulated data; and (3) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting, the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation.

Keywords: complex phenotypes; computational resources; genetic simulation; next-generation sequencing; rare variants.

PubMed Disclaimer

References

    1. Agarwala V, Flannick J, Sunyaev S, Altshuler D. Evaluating empirical bounds on complex disease genetic architecture. Nat Genet. 2013;45(12):1418–27. - PMC - PubMed
    1. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162(4):2025–35. - PMC - PubMed
    1. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Med Decis Making. 2012;32(5):667–77. - PubMed
    1. Chen H, Yu T, Chen JY. Semantic Web meets Integrative Biology: a survey. Brief Bioinform. 2013;14(1):109–25. - PubMed
    1. Coventry A, Bull-Otterson LM, Liu X, Clark AG, Maxwell TJ, Crosby J, Hixson JE, Rea TJ, Muzny DM, Lewis LR, Wheeler DA, Sabo A, Lusk C, Weiss KG, Akbar H, Cree A, Hawes AC, Newsham I, Varghese RT, Villasana D, Gross S, Joshi V, Santibanez J, Morgan M, Chang K, Iv WH, Templeton AR, Boerwinkle E, Gibbs R, Sing CF. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nat Commun. 2010;1:131. - PMC - PubMed

Publication types