Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 5;9(11):e108134.
doi: 10.1371/journal.pone.0108134. eCollection 2014.

KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects

Affiliations

KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects

Jiandong Zhao et al. PLoS One. .

Abstract

Background: Nonsyndromic enlargement of vestibular aqueduct (NSEVA) is an autosomal recessive hearing loss disorder that is associated with mutations in SLC26A4. However, not all patients with NSEVA carry biallelic mutations in SLC26A4. A recent study proposed that single mutations in both SLC26A4 and KCNJ10 lead to digenic NSEVA. We examined whether KCNJ10 excert a role in the pathogenesis of NSEVA in Chinese patients.

Methods: SLC26A4 was sequenced in 1056 Chinese patients with NSEVA. KCNJ10 was screened in 131 patients who lacked mutations in either one or both alleles of SLC26A4. Additionally, KCNJ10 was screened in 840 controls, including 563 patients diagnosed with NSEVA who carried biallelic SLC26A4 mutations, 48 patients with nonsyndromic hearing loss due to inner ear malformations that did not involve enlargement of the vestibular aqueduct (EVA), 96 patients with conductive hearing loss due to various causes, and 133 normal-hearing individuals with no family history of hereditary hearing loss.

Results: 925 NSEVA patients were found carrying two-allele pathogenic SLC26A4 mutations. The most frequently detected KCNJ10 mutation was c.812G>A (p.R271H). Compared with the normal-hearing control subjects, the occurrence rate of c.812G>A in NSEVA patients with lacking mutations in one or both alleles of SLC26A4 had no significant difference(1.53% vs. 5.30%, χ(2) = 2.798, p = 0.172), which suggested that it is probably a nonpathogenic benign variant. KCNJ10 c.1042C>T (p.R348C), the reported EVA-related mutation, was not found in patients with NSEVA who lacked mutations in either one or both alleles of SLC26A4. Furthermore, the normal-hearing parents of patients with NSEVA having two SLC26A4 mutations carried the KCNJ10 c.1042C>T or c.812G>A mutation and a SLC26A4 pathogenic mutation.

Conclusion: SLC26A4 is the major genetic cause in Chinese NSEVA patients, accounting for 87.59%. KCNJ10 may not be a contributor to NSEVA in Chinese population. Other genetic or environmental factors are possibly play a role in the etiology of Chinese EVA patients with zero or monoallelic SLC26A4 mutation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Similar articles

Cited by

References

    1. Mafee MF, Charletta D, Kumar A, Belmont H (1992) Large vestibular aqueduct and congenital sensorineural hearing loss. AJNR Am J Neuroradiol. 13: 805–819. - PMC - PubMed
    1. Dossena S, Rodighiero S, Vezzoli V, Nofziger C, Salvioni E, et al. (2009) Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol. 43: 93–103. - PubMed
    1. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 447: 710–721. - PubMed
    1. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 34: 494–515. - PMC - PubMed
    1. Yoshino T, Sato E, Nakashima T, Nagashima W, Teranishi MA, et al. (2004) The immunohistochemical analysis of pendrin in the mouse inner ear. Hear Res. 195: 9–16. - PubMed

Publication types

Substances

Supplementary concepts

LinkOut - more resources