Induction of interleukin-1 receptors on chondrocytes by fibroblast growth factor: a possible mechanism for modulation of interleukin-1 activity
- PMID: 2537323
- DOI: 10.1002/jcp.1041380204
Induction of interleukin-1 receptors on chondrocytes by fibroblast growth factor: a possible mechanism for modulation of interleukin-1 activity
Abstract
Interleukin-1 is a polypeptide factor with profound effects on several cell types, such as chondrocytes, fibroblasts, and T-cells. The ability of interleukin-1 to induce the synthesis of matrix-degradative enzymes, as well as prostaglandin E2, suggests a pivotal role for this mediator in chronic inflammation. Previous studies have shown that the effect of human monocyte interleukin-1 on the synthesis of collagenase and neutral proteases by chondrocytes was enhanced by basic fibroblast growth factor. Using recombinant human interleukin-1B, we have examined whether the potentiation of interleukin-1 effects by fibroblast growth factor is related to changes in the number or affinity of interleukin-1 receptors. Our studies confirm that rabbit articular chondrocytes in culture contain a single class of high-affinity receptors for interleukin-1 with a Ka of 0.9-1.1 x 10(-13) M-1. While the untreated chondrocytes contain approximately 1,620 receptors per cell, fibroblast growth factor-treated cells exhibit a higher number of receptors (approximately 2,960 per cell) with no apparent change in the affinity. The increase in receptor number can be abolished by inhibitors of lysosomal function, indicating a requirement for intracellular processing of the fibroblast growth factor. Our results suggest that the potentiation of interleukin-1 catabolic effects by fibroblast growth factor may be related to its ability to induce additional interleukin-1 receptors on the chondrocyte cell surface.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
