Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb;138(2):236-46.
doi: 10.1002/jcp.1041380204.

Induction of interleukin-1 receptors on chondrocytes by fibroblast growth factor: a possible mechanism for modulation of interleukin-1 activity

Affiliations

Induction of interleukin-1 receptors on chondrocytes by fibroblast growth factor: a possible mechanism for modulation of interleukin-1 activity

S Chandrasekhar et al. J Cell Physiol. 1989 Feb.

Abstract

Interleukin-1 is a polypeptide factor with profound effects on several cell types, such as chondrocytes, fibroblasts, and T-cells. The ability of interleukin-1 to induce the synthesis of matrix-degradative enzymes, as well as prostaglandin E2, suggests a pivotal role for this mediator in chronic inflammation. Previous studies have shown that the effect of human monocyte interleukin-1 on the synthesis of collagenase and neutral proteases by chondrocytes was enhanced by basic fibroblast growth factor. Using recombinant human interleukin-1B, we have examined whether the potentiation of interleukin-1 effects by fibroblast growth factor is related to changes in the number or affinity of interleukin-1 receptors. Our studies confirm that rabbit articular chondrocytes in culture contain a single class of high-affinity receptors for interleukin-1 with a Ka of 0.9-1.1 x 10(-13) M-1. While the untreated chondrocytes contain approximately 1,620 receptors per cell, fibroblast growth factor-treated cells exhibit a higher number of receptors (approximately 2,960 per cell) with no apparent change in the affinity. The increase in receptor number can be abolished by inhibitors of lysosomal function, indicating a requirement for intracellular processing of the fibroblast growth factor. Our results suggest that the potentiation of interleukin-1 catabolic effects by fibroblast growth factor may be related to its ability to induce additional interleukin-1 receptors on the chondrocyte cell surface.

PubMed Disclaimer

LinkOut - more resources