The contribution of αβ-tubulin curvature to microtubule dynamics
- PMID: 25385183
- PMCID: PMC4226729
- DOI: 10.1083/jcb.201407095
The contribution of αβ-tubulin curvature to microtubule dynamics
Abstract
Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks.
© 2014 Brouhard and Rice.
Figures
References
-
- Akhmanova A., Hoogenraad C.C., Drabek K., Stepanova T., Dortland B., Verkerk T., Vermeulen W., Burgering B.M., De Zeeuw C.I., Grosveld F., and Galjart N.. 2001. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell. 104:923–935 10.1016/S0092-8674(01)00288-4 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
