Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct 27:5:183.
doi: 10.3389/fendo.2014.00183. eCollection 2014.

Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism

Affiliations
Review

Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism

Gerald W Hart. Front Endocrinol (Lausanne). .

Abstract

Even though the dynamic modification of polypeptides by the monosaccharide, O-linked N-acetylglucosamine (O-GlcNAcylation) was discovered over 30 years ago, its physiological significance as a major nutrient sensor that regulates myriad cellular processes has only recently been more widely appreciated. O-GlcNAcylation, either on its own or by its interplay with other post-translational modifications, such as phosphorylation, ubiquitination, and others, modulates the activities of signaling proteins, regulates most components of the transcription machinery, affects cell cycle progression and regulates the targeting/turnover or functions of myriad other regulatory proteins, in response to nutrients. Acute increases in O-GlcNAcylation protect cells from stress-induced injury, while chronic deregulation of O-GlcNAc cycling contributes to the etiology of major human diseases of aging, such as diabetes, cancer, and neurodegeneration. Recent advances in tools to study O-GlcNAcylation at the individual site level and specific inhibitors of O-GlcNAc cycling have allowed more rapid progress toward elucidating the specific functions of O-GlcNAcylation in essential cellular processes.

Keywords: Alzheimer’s disease; O-GlcNAc transferase; O-GlcNAcase; O-GlcNAcylation; cancer; diabetes; signaling; transcription.

PubMed Disclaimer

References

    1. Torres C-R, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J Biol Chem (1984) 259:3308–17. - PubMed
    1. Holt GD, Hart GW. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem (1986) 261:8049–57. - PubMed
    1. Hanover JA, Cohen CK, Willingham MC, Park MK. O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem (1987) 262:9887–94. - PubMed
    1. Davis LI, Blobel G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci U S A (1987) 84:7552–6.10.1073/pnas.84.21.7552 - DOI - PMC - PubMed
    1. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol (1987) 104:1157–64.10.1083/jcb.104.5.1157 - DOI - PMC - PubMed

LinkOut - more resources