Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 15;31(6):919-25.
doi: 10.1093/bioinformatics/btu732. Epub 2014 Nov 11.

GlycoRDF: an ontology to standardize glycomics data in RDF

Affiliations

GlycoRDF: an ontology to standardize glycomics data in RDF

Rene Ranzinger et al. Bioinformatics. .

Abstract

Motivation: Over the last decades several glycomics-based bioinformatics resources and databases have been created and released to the public. Unfortunately, there is no common standard in the representation of the stored information or a common machine-readable interface allowing bioinformatics groups to easily extract and cross-reference the stored information.

Results: An international group of bioinformatics experts in the field of glycomics have worked together to create a standard Resource Description Framework (RDF) representation for glycomics data, focused on glycan sequences and related biological source, publications and experimental data. This RDF standard is defined by the GlycoRDF ontology and will be used by database providers to generate common machine-readable exports of the data stored in their databases.

Availability and implementation: The ontology, supporting documentation and source code used by database providers to generate standardized RDF are available online (http://www.glycoinfo.org/GlycoRDF/).

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
UML diagram of the core classes in the GlycoRDF ontology. The five central classes (grey boxes) are shown together with their major subclasses (white boxes) and the predicates connecting those (arrows with arrowhead pointing towards the object of a RDF triple)
Fig. 2.
Fig. 2.
RDF example for the encoding of (A) a glycan and its LINUCS representation, (B) the monosaccharide composition of the glycan, and (C) usage of a ReferencedCompound to link the glycan with a publication

Similar articles

Cited by

  • GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology.
    Groth T, Diehl AD, Gunawan R, Neelamegham S. Groth T, et al. Bioinformatics. 2022 Dec 13;38(24):5413-5420. doi: 10.1093/bioinformatics/btac704. Bioinformatics. 2022. PMID: 36282863 Free PMC article.
  • SugarBindDB, a resource of glycan-mediated host-pathogen interactions.
    Mariethoz J, Khatib K, Alocci D, Campbell MP, Karlsson NG, Packer NH, Mullen EH, Lisacek F. Mariethoz J, et al. Nucleic Acids Res. 2016 Jan 4;44(D1):D1243-50. doi: 10.1093/nar/gkv1247. Epub 2015 Nov 17. Nucleic Acids Res. 2016. PMID: 26578555 Free PMC article.
  • An Updated Overview of Existing Cancer Databases and Identified Needs.
    Austin BK, Firooz A, Valafar H, Blenda AV. Austin BK, et al. Biology (Basel). 2023 Aug 21;12(8):1152. doi: 10.3390/biology12081152. Biology (Basel). 2023. PMID: 37627037 Free PMC article. Review.
  • Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication.
    Kellman BP, Lewis NE. Kellman BP, et al. Trends Biochem Sci. 2021 Apr;46(4):284-300. doi: 10.1016/j.tibs.2020.10.004. Epub 2020 Dec 18. Trends Biochem Sci. 2021. PMID: 33349503 Free PMC article. Review.
  • BioHackathon 2015: Semantics of data for life sciences and reproducible research.
    Vos RA, Katayama T, Mishima H, Kawano S, Kawashima S, Kim JD, Moriya Y, Tokimatsu T, Yamaguchi A, Yamamoto Y, Wu H, Amstutz P, Antezana E, Aoki NP, Arakawa K, Bolleman JT, Bolton E, Bonnal RJP, Bono H, Burger K, Chiba H, Cohen KB, Deutsch EW, Fernández-Breis JT, Fu G, Fujisawa T, Fukushima A, García A, Goto N, Groza T, Hercus C, Hoehndorf R, Itaya K, Juty N, Kawashima T, Kim JH, Kinjo AR, Kotera M, Kozaki K, Kumagai S, Kushida T, Lütteke T, Matsubara M, Miyamoto J, Mohsen A, Mori H, Naito Y, Nakazato T, Nguyen-Xuan J, Nishida K, Nishida N, Nishide H, Ogishima S, Ohta T, Okuda S, Paten B, Perret JL, Prathipati P, Prins P, Queralt-Rosinach N, Shinmachi D, Suzuki S, Tabata T, Takatsuki T, Taylor K, Thompson M, Uchiyama I, Vieira B, Wei CH, Wilkinson M, Yamada I, Yamanaka R, Yoshitake K, Yoshizawa AC, Dumontier M, Kosaki K, Takagi T. Vos RA, et al. F1000Res. 2020 Feb 24;9:136. doi: 10.12688/f1000research.18236.1. eCollection 2020. F1000Res. 2020. PMID: 32308977 Free PMC article.

References

    1. Aoki-Kinoshita K.F., et al. . (2013a) Introducing glycomics data into the Semantic Web. J. Biomed. Semantics, 4, 39. - PMC - PubMed
    1. Aoki-Kinoshita K.F., et al. . (2013b) The fifth ACGG-DB meeting report: towards an international glycan structure repository. Glycobiology, 23, 1422–1424. - PMC - PubMed
    1. Banin E., et al. . (2002) A novel Linear Code(R) nomenclature for complex carbohydrates. Trends Glycosci. Glycotechnol., 14, 127–137.
    1. Belleau F., et al. . (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform., 41, 706–716. - PubMed
    1. Campbell M.P., et al. . (2011) UniCarbKB: putting the pieces together for glycomics research. Proteomics, 11, 4117–4121. - PubMed

Publication types

Substances