Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 28:8:208.
doi: 10.3389/fnsys.2014.00208. eCollection 2014.

Enhancement of sleep slow waves: underlying mechanisms and practical consequences

Affiliations

Enhancement of sleep slow waves: underlying mechanisms and practical consequences

Michele Bellesi et al. Front Syst Neurosci. .

Abstract

Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

Keywords: EEG; NREM sleep; acoustic stimulation; arousal systems; closed-loop.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Representative example of acoustic stimulation delivered in 15-s blocks during deeper stages of NREM sleep (N2 and N3, 50 ms tones played with an inter-tone-interval of 1 s). A custom algorithm delivered acoustic stimuli automatically, using the ongoing EEG to examine sleep and adjust tone timing and volume. Hypnogram and SWA band-limited power (BLP) for channel F3-M2 along with the stimulation blocks shown below in red (2 min of EEG and tone stimulation are expanded below). Note that during ON blocks slow waves are more numerous and larger. (B) All subjects (n = 6) showed overall increases in SWA (top plot) in ON blocks relative to the temporally adjacent OFF blocks, while other frequency ranges did not change (bottom plot). * indicates significantly different based on a paired t-test, Bonferroni corrected for multiple comparisons (p < 0.0125). (C) Top plot shows a butterfly plot (all channels overlaid) averaging across all 100 slow waves aligned by the negative peak. Slow waves were randomly selected for comparison from the ON and OFF periods of the stimulation night and from a BASELINE (no stimulation) night. Middle plot shows the average scalp voltage topography at the negative peak. Bottom plot shows the traveling of individual waves and their average speed below. Each dot represents the origin of the wave and the line describes its traveling. Slow waves were detected globally based on standard criteria and traveling was calculated from the negative peak lag distribution of each wave (Siclari et al., 2014).
Figure 2
Figure 2
Sleep recordings performed with a HydroCel 256 channel hdEEG net (Electrical Geodesics Inc.) using NetStation software in healthy subjects (n = 5). Auditory tones were delivered through speakers or headphones during N2-N3 sleep stages. Auditory KCs and slow waves were detected globally based on period-amplitude criteria (peak to peak minimum amplitude: 75 µV; negative going zero-crossing to positive going zero-crossings greater than 250 ms and less than 1000 ms). For the KCs, an additional criterion was that the waves had to occur between 200 and 1100 ms after the auditory stimulus. Top figures are butterfly plots (all channels overlaid) averaging across all auditory evoked KCs (on the left) and all spontaneous slow waves (on the right). Both waves were aligned by the negative peak. Bottom plots show the average scalp voltage topography at the negative peak for KCs (on the left) and spontaneous slow waves (on the right).
Figure 3
Figure 3
(A–C) Similarity of scalp and source topographies of K-complex (KC) responses. Across subject (n = 7) grand average 256-channel EEG butterfly plot (overlaid traces) of the evoked response during sleep for auditory, somatosensory, and visual stimulation. (A–C’) Scalp topography for the N550 time periods. Each map is independently scaled in order to indicate relative topography. Red indicates positivity with respect to the average and blue indicates negativity. (A’) ranges from −30 (blue) to +20 (red); (B’) ranges from −10 (blue) to +7 (red); (C’) ranges from −23 (blue) to + 17 (red). (A–C”) Flat maps of the cortical sources for the N550 peak. Current hot spots (most current) indicated in red, cold spots in blue. AC = Anterior Cingulate, MFG = Middle Frontal Gyrus, IPL = Inferior Parietal Lobule. (ABC”), respectively MIN = −1.3, −1.2, −1.4; MAX = 2.6,2.5,2.3. (D) Modality-specific differences in cortical sources for the N550 peak of KC. Flat map of significantly different cortical sources across stimulation modalities (Quade test, p < 0.05). Color-coding of voxels indicates the stimulation with the highest ranking relative to the other stimulation modalities (adapted from Riedner et al., 2011).
Figure 4
Figure 4
Schematic representation of the organization of the ascending acoustic pathways and relative targets in the thalamus and the cerebral cortex. ICx: shell of the inferior colliculus; MRF: midbrain reticular formation; Sag: Sagulum; ST: spinothalamic tract; PRF: pontine reticular formation; NGC: Nucleus gigantocellularis; LC: Locus coeruleus; IC: Inferior colliculus; SC; Superior colliculus; MGd: Medial geniculate dorsal; MGm: Medial geniculate caudo-medial; MGv: Medial geniculate ventral.
Figure 5
Figure 5
Schematic representation of the hypothetical role of thalamic matrix cells and noradrenaline (NA) in regulating the EEG outcome after tone presentation. We hypothesize that, during NREM sleep, acoustic stimuli can be ineffective, lead to enhanced waves, or provoke cortical arousals, depending on the involvement of the locus coeruleus and/or thalamic matrix cells.
Figure 6
Figure 6
Schematic representation of an automated real-time system capable of adjusting acoustic stimulation parameters according to the ongoing sleep.

References

    1. Achermann P., Borbély A. A. (1997). Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222. 10.1016/s0306-4522(97)00186-3 - DOI - PubMed
    1. Achermann P., Borbély A. A. (2003). Mathematical models of sleep regulation. Front. Biosci. 8, s683–s693. 10.2741/1064 - DOI - PubMed
    1. Ackner B., Pampiglione G. (1957). Some relationships between peripheral vasomotor and E.E.G. changes. J. Neurol. Neurosurg. Psychiatry 20, 58–64. 10.1136/jnnp.20.1.58 - DOI - PMC - PubMed
    1. Adamantidis A. R., Zhang F., Aravanis A. M., Deisseroth K., de Lecea L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424. 10.1038/nature06310 - DOI - PMC - PubMed
    1. Adrian E. D., Matthews B. H. C. (1934). The Berger rhythm: potential changes from the occipital lobes in man. Brain 57, 355–385. 10.1093/brain/57.4.355 - DOI - PubMed