Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Apr;256(4 Pt 1):C902-12.
doi: 10.1152/ajpcell.1989.256.4.C902.

Stilbene disulfonate blockade of colonic secretory Cl- channels in planar lipid bilayers

Affiliations

Stilbene disulfonate blockade of colonic secretory Cl- channels in planar lipid bilayers

R J Bridges et al. Am J Physiol. 1989 Apr.

Abstract

We studied blockade by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) of a secretory Cl- channel from colonic enterocyte plasma membrane vesicles incorporated into planar lipid bilayer membranes. Except for intermittent long-lived closed periods (100 ms to several min), the control channel open probability (Po) was greater than 90%. DNDS, added to the cis or vesicle-containing side, which corresponds to the outer membrane side of the channel, caused a dramatic increase in the number of current transitions from the open-to-closed state. DNDS caused a concentration-dependent decrease in Po with a maximum inhibition of 95 +/- 2.0% and a half-maximal inhibitory concentration of 3.3 +/- 1.4 microM. DNDS added to the trans side of the channel had no effect on either the single-channel conductance or kinetic behavior of the channel. Kinetic analysis revealed that DNDS blockade from the cis side could be explained by a linear, closed-open-blocked, kinetic scheme. The estimated DNDS block rate constants were kon = 3.2 X 10(7) M-1.s-1 and koff = 52 s-1, yielding an equilibrium dissociation constant (KD) of 2.1 +/- 0.38 microM, similar to the Ki for inhibition of Po. The effects of DNDS were fully reversible after perfusion of the cis compartment with DNDS-free solution. In contrast, the covalently reactive 4,4'-diisothiocyano-substituted stilbene disulfonate caused an irreversible blockade of the Cl- channel.

PubMed Disclaimer

Publication types

LinkOut - more resources