Vasculopathy and pulmonary hypertension in sickle cell disease
- PMID: 25398989
- PMCID: PMC4329471
- DOI: 10.1152/ajplung.00252.2014
Vasculopathy and pulmonary hypertension in sickle cell disease
Abstract
Sickle cell disease (SCD) is an autosomal recessive disorder in the gene encoding the β-chain of hemoglobin. Deoxygenation causes the mutant hemoglobin S to polymerize, resulting in rigid, adherent red blood cells that are entrapped in the microcirculation and hemolyze. Cardinal features include severe painful crises and episodic acute lung injury, called acute chest syndrome. This population, with age, develops chronic organ injury, such as chronic kidney disease and pulmonary hypertension. A major risk factor for developing chronic organ injury is hemolytic anemia, which releases red blood cell contents into the circulation. Cell free plasma hemoglobin, heme, and arginase 1 disrupt endothelial function, drive oxidative and inflammatory stress, and have recently been referred to as erythrocyte damage-associated molecular pattern molecules (eDAMPs). Studies suggest that in addition to effects of cell free plasma hemoglobin on scavenging nitric oxide (NO) and generating reactive oxygen species (ROS), heme released from plasma hemoglobin can bind to the toll-like receptor 4 to activate the innate immune system. Persistent intravascular hemolysis over decades leads to chronic vasculopathy, with ∼10% of patients developing pulmonary hypertension. Progressive obstruction of small pulmonary arterioles, increase in pulmonary vascular resistance, decreased cardiac output, and eventual right heart failure causes death in many patients with this complication. This review provides an overview of the pathobiology of hemolysis-mediated endothelial dysfunction and eDAMPs and a summary of our present understanding of diagnosis and management of pulmonary hypertension in sickle cell disease, including a review of recent American Thoracic Society (ATS) consensus guidelines for risk stratification and management.
Keywords: cell free hemoglobin; nitric oxide; pulmonary hypertension; sickle cell disease.
Copyright © 2015 the American Physiological Society.
Figures
References
-
- Anthi A, Machado RF, Jison ML, Taveira-Dasilva AM, Rubin LJ, Hunter L, Hunter CJ, Coles W, Nichols J, Avila NA, Sachdev V, Chen CC, Gladwin MT. Hemodynamic and functional assessment of patients with sickle cell disease and pulmonary hypertension. Am J Respir Crit Care Med 175: 1272–1279, 2007. - PMC - PubMed
-
- Aslan M, Ryan TM, Adler B, Townes TM, Parks DA, Thompson JA, Tousson A, Gladwin MT, Patel RP, Tarpey MM, Batinic-Haberle I, White CR, Freeman BA. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA 98: 15215–15220, 2001. - PMC - PubMed
-
- Aslan M, Ryan TM, Townes TM, Coward L, Kirk MC, Barnes S, Alexander CB, Rosenfeld SS, Freeman BA. Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization. J Biol Chem 278: 4194–4204, 2003. - PubMed
-
- Ataga KI, Moore CG, Hillery CA, Jones S, Whinna HC, Strayhorn D, Sohier C, Hinderliter A, Parise LV, Orringer EP. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica 93: 20–26, 2008. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
