Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 May;64(5):867-81.
doi: 10.1161/01.res.64.5.867.

On the mechanism of drug-induced blockade of Na+ currents: interaction of antiarrhythmic compounds with DPI-modified single cardiac Na+ channels

Affiliations
Free article
Comparative Study

On the mechanism of drug-induced blockade of Na+ currents: interaction of antiarrhythmic compounds with DPI-modified single cardiac Na+ channels

M Kohlhardt et al. Circ Res. 1989 May.
Free article

Abstract

In patch-clamped membranes from neonatal rat cardiocytes, elementary Na+ currents were recorded at 19 degrees C for study of the inhibitory influence of several antiarrhythmic drugs including lidocaine, diprafenone, propafenone, and prajmalium on DPI-modified cardiac Na+ channels. Diprafenone (20 mumol/l) and lidocaine (300 mumol/l) induced a voltage- and time-dependent block of reconstructed macroscopic sodium current (INa). The drugs depressed the sustained, noninactivating INa component (which reflects the number and open probability of DPI-modified Na+ channels) effectively, in a voltage- and time-dependent fashion. Once opened, DPI-modified Na+ channels are highly drug-sensitive. Antiarrhythmic drugs (propafenone, diprafenone, and, to a lesser extent, lidocaine) provoke a flicker block, that is, the long-lasting openings are chopped into a large number of short and grouped openings. This indicates rapid transitions between a drug-associated, blocked state and a drug-free, conducting state. The latter has a unitary conductance of 12 pS, very similar to the control value in the absence of antiarrhythmic drugs. The decrease in open time of drug-treated DPI-modified Na+ channels is concentration-dependent. Hill coefficients for propafenone of about 1.0 and for prajmalium of about 0.7 were calculated. A blocking rate constant of 6.1 x 10(7) mol-1sec-1 for propafenone, but of 1.5 x 10(7) mol-1sec-1 for prajmalium was obtained at -30 mV. The unblocking rate constant for propafenone was, also at -30 mV, about twice as large as the unblocking rate constant for prajmalium. The open channel block kinetics are essentially voltage-dependent. The affinity of the channel-associated drug receptor increases on membrane depolarization. The blocking rate constant was inversely related to the number of Na+ ions moving through the open channel. It is concluded that the manifestation of this voltage- and Na+-dependent flicker block is intimately related to removal of fast Na+ inactivation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources