Hyperoxia-induced changes in estradiol metabolism in postnatal airway smooth muscle
- PMID: 25399436
- PMCID: PMC4338940
- DOI: 10.1152/ajplung.00266.2014
Hyperoxia-induced changes in estradiol metabolism in postnatal airway smooth muscle
Abstract
Supplemental oxygen, used to treat hypoxia in preterm and term neonates, increases the risk of neonatal lung diseases, such as bronchopulmonary dysplasia (BPD) and asthma. There is a known sex predilection for BPD, but the underlying mechanisms are not clear. We tested the hypothesis that altered, local estradiol following hyperoxia contributes to pathophysiological changes observed in immature lung. In human fetal airway smooth muscle (fASM) cells exposed to normoxia or hyperoxia, we measured the expression of proteins involved in estrogen metabolism and cell proliferation responses to estradiol. In fASM cells, CYP1a1 expression was increased by hyperoxia, whereas hyperoxia-induced enhancement of cell proliferation was blunted by estradiol. Pharmacological studies indicated that these effects were attributable to upregulation of CYP1a1 and subsequent increased metabolism of estradiol to a downstream intermediate 2-methoxyestradiol. Microarray analysis of mouse lung exposed to 14 days of hyperoxia showed the most significant alteration in CYP1a1 expression, with minimal changes in expression of five other genes related to estrogen receptors, synthesis, and metabolism. Our novel results on estradiol metabolism in fetal and early postnatal lung in the context of hyperoxia indicate CYP1a1 as a potential mechanism for the protective effect of estradiol in hyperoxia-exposed immature lung, which may help explain the sex difference in neonatal lung diseases.
Keywords: 2-methoxyestradiol; CYP1a1; airway smooth muscle; bronchopulmonary dysplasia; estradiol; hyperoxia; neonate.
Copyright © 2015 the American Physiological Society.
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                References
- 
    - Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, Wygrecka M, Eul B, Kobrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE. Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292: L537–L549, 2007. - PubMed
 
- 
    - Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch Biochem Biophys 436: 50–61, 2005. - PubMed
 
- 
    - Chua YS, Chua YL, Hagen T. Structure activity analysis of 2-methoxyestradiol analogues reveals targeting of microtubules as the major mechanism of antiproliferative and proapoptotic activity. Mol Cancer Ther 9: 224–235, 2010. - PubMed
 
- 
    - Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol 30: 179–184, 2006. - PubMed
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
- Molecular Biology Databases
- Miscellaneous
 
        