Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 31:4:157.
doi: 10.3389/fcimb.2014.00157. eCollection 2014.

Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins

Affiliations

Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins

Elizabeth R Moore et al. Front Cell Infect Microbiol. .

Abstract

Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen interactions thus draining nutrients from the cell and negatively impacting it. While Chlamydia orchestrates some aspects of cell function, recent data indicate host cells remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies on the host cell for necessary metabolites, the overall function of the host cell, during chlamydial growth and development, is not grossly disturbed. This is consistent with the obligate intracellular organism's interest to maintain viability of its host. To this end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular markers for the inclusion membrane. Incs also contribute to the physical structure of the inclusion membrane and facilitate host-pathogen interactions across it. Given the function of Incs and the dynamic interactions that occur at the inclusion membrane, we propose that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen. We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified parasitic organelle. This representation integrates the inclusion within existing subcellular trafficking pathways to divert a subset of host-derived metabolites thus maintaining host cell homeostasis. We review the known interactions of the chlamydial inclusion with the host cell and discuss the role of Inc proteins in the context of this model and how this perspective can impact the study of these proteins. Lessons learnt from the chlamydial pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This will increase our understanding of how intracellular pathogens engage the host cell to establish their unique developmental niches.

Keywords: Chlamydia; inc protein; inclusion membrane; parasitophorous vacuole; pathogen specified organelle.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Model of the function of the chlamydial inclusion. In (A), there are two representations of the chlamydial inclusion: the classical paradigm of the chlamydial inclusion as a parasitophorous vacuole and our concept of the chlamydial inclusion as a pathogen-specified parasitic organelle, which is more consistent with recent data. In (B), the composition of the inclusion membrane is represented with Inc proteins serving as scaffolds to organize the membrane by creating microdomains to support host-chlamydial interactions and organize the inner leaflet of the chlamydial inclusion membrane. In our model, microdomains are collections of discrete subsets of Inc proteins as described in Mital et al. (2010) and Alzhanov et al. (2009).
Figure 2
Figure 2
Hypothetical model for temporal changes in the inclusion membrane with proposed functions. Boxed and circled proteins are known host-cell derived proteins that localize to the inclusion. Unboxed proteins or letters represent Incs. The only interaction to be validated by multiple biochemical assays demonstrating in-cell interactions is IncD and CERT (Agaisse and Derre, 2014).
Figure 3
Figure 3
Inducible expression of IncATM-APEX2. HeLa cells were inoculated with C. trachomatis serovar L2 transformed with pASK-IncATM_APEX2-mKate2::L2 to allow for inducible expression of the N-terminal region of IncA encoding the transmembrane domains (TM) fused to APEX2. The plasmid backbone (pASK-GFP/mKate2-L2 plasmid) for this study was generously provided by P. Scott Hefty (Department of Molecular Biosciences, University of Kansas) (Wickstrum et al., 2013). 6 h after infection, IncATM-APEX2 expression was induced by treating cultures with 10 ng/ml anhydrotetracycline for an additional 18 h. Monolayers were then treated with or without biotin-phenol, processed for immunofluorescence and visualized with a 60X objective on an Olympus Fluoview 1000 Laser Scanning Confocal Microscope. White arrows depict IncATM-APEX2 (red) localized to the IM or fibers extending from the inclusion. In the presence of biotin-phenol the construct is able to biotinylate (green, detected with streptavidin-488) the IM. Scalebar = 5 μm.

Similar articles

Cited by

References

    1. Abdelrahman Y. M., Belland R. J. (2005). The chlamydial developmental cycle. FEMS Microbiol. Rev. 29, 949–959. 10.1016/j.femsre.2005.03.002 - DOI - PubMed
    1. Agaisse H., Derre I. (2014). The expression of the effector protein IncD in C. trachomatis mediates the recruitment of the lipid transfer protein CERT and the ER-resident protein VAPB to the inclusion membrane. Infect. Immun. 82, 2037–2047. 10.1128/IAI.01530-14 - DOI - PMC - PubMed
    1. Allan B. B., Moyer B. D., Balch W. E. (2000). Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448. 10.1126/science.289.5478.444 - DOI - PubMed
    1. Alzhanov D. T., Weeks S. K., Burnett J. R., Rockey D. D. (2009). Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223. BMC Microbiol. 9:2. 10.1186/1471-2180-9-2 - DOI - PMC - PubMed
    1. Andersson S. G., Zomorodipour A., Andersson J. O., Sicheritz-Ponten T., Alsmark U. C., Podowski R. M., et al. . (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140. 10.1038/24094 - DOI - PubMed

Publication types

MeSH terms