Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 17;9(11):e111949.
doi: 10.1371/journal.pone.0111949. eCollection 2014.

Decrease in urinary creatinine excretion in early stage chronic kidney disease

Collaborators, Affiliations

Decrease in urinary creatinine excretion in early stage chronic kidney disease

Elena Tynkevich et al. PLoS One. .

Abstract

Background: Little is known about muscle mass loss in early stage chronic kidney disease (CKD). We used 24-hour urinary creatinine excretion rate to assess determinants of muscle mass and its evolution with kidney function decline. We also described the range of urinary creatinine concentration in this population.

Methods: We included 1072 men and 537 women with non-dialysis CKD stages 1 to 5, all of them with repeated measurements of glomerular filtration rate (mGFR) by (51)Cr-EDTA renal clearance and several nutritional markers. In those with stage 1 to 4 at baseline, we used a mixed model to study factors associated with urinary creatinine excretion rate and its change over time.

Results: Baseline mean urinary creatinine excretion decreased from 15.3 ± 3.1 to 12.1 ± 3.3 mmol/24 h (0.20 ± 0.03 to 0.15 ± 0.04 mmol/kg/24 h) in men, with mGFR falling from ≥ 60 to <15 mL/min/1.73 m(2), and from 9.6 ± 1.9 to 7.6 ± 2.5 (0.16 ± 0.03 to 0.12 ± 0.03) in women. In addition to mGFR, an older age, diabetes, and lower levels of body mass index, proteinuria, and protein intake assessed by urinary urea were associated with lower mean urinary creatinine excretion at baseline. Mean annual decline in mGFR was 1.53 ± 0.12 mL/min/1.73 m(2) per year and that of urinary creatinine excretion rate, 0.28 ± 0.02 mmol/24 h per year. Patients with fast annual decline in mGFR of 5 mL/min/1.73 m(2) had a decrease in urinary creatinine excretion more than twice as big as in those with stable mGFR, independent of changes in urinary urea as well as of other determinants of low muscle mass.

Conclusions: Decrease in 24-hour urinary creatinine excretion rate may appear early in CKD patients, and is greater the more mGFR declines independent of lowering protein intake assessed by 24-hour urinary urea. Normalizing urine analytes for creatininuria may overestimate their concentration in patients with reduced kidney function and low muscle mass.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have the following interests. This study was partly supported by Roche. B.S. has received consulting or lecture fees from AbbVie, Amgen, Fresenius, and MSD; M.F. has received research funds from Hoffmann-La Roche; M.F. has been employed by Amgen since January 1, 2011, but was a full-time academic associate professor during the time of study conception and data collection. There are no patents, products in development, or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1
Figure 1. Flowchart of study sample.
Figure 2
Figure 2. Percentages of low urinary creatinine excretion according to mGFR and eGFR level, by gender.
Figure shows the percentage of patients with low creatinine excretion rates according to both measured (2A) and estimated (2B) glomerular filtration rate classes in men and women. Gender-specific thresholds were defined as the 10th percentile of the urinary creatinine distribution in patients with mGFR ≥60 mL/min/1.73 m2.

References

    1. Kalantar-Zadeh K, Ikizler TA, Block G, Avram MM, Kopple JD (2003) Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis Off J Natl Kidney Found 42: 864–881. - PubMed
    1. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, et al. (2008) A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 73: 391–398 10.1038/sj.ki.5002585 - DOI - PubMed
    1. Blumenkrantz MJ, Kopple JD, Gutman RA, Chan YK, Barbour GL, et al. (1980) Methods for assessing nutritional status of patients with renal failure. Am J Clin Nutr 33: 1567–1585. - PubMed
    1. Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, et al. (2011) Wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle 2: 9–25 10.1007/s13539-011-0019-5 - DOI - PMC - PubMed
    1. Kalantar-Zadeh K, Kopple JD (2001) Relative contributions of nutrition and inflammation to clinical outcome in dialysis patients. Am J Kidney Dis Off J Natl Kidney Found 38: 1343–1350 10.1053/ajkd.2001.29250 - DOI - PubMed

Publication types