Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;114(5):450-9.
doi: 10.1038/hdy.2014.105. Epub 2014 Nov 19.

Use of RAD sequencing for delimiting species

Affiliations

Use of RAD sequencing for delimiting species

E Pante et al. Heredity (Edinb). 2015 May.

Abstract

RAD-tag sequencing is a promising method for conducting genome-wide evolutionary studies. However, to date, only a handful of studies empirically tested its applicability above the species level. In this communication, we use RAD tags to contribute to the delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for which few classical genetic markers have proved informative. Previous studies have hypothesized that single mitochondrial haplotypes can be used to delimit Chrysogorgia species. On the basis of two lanes of Illumina sequencing, we inferred phylogenetic relationships among 12 putative species that were delimited using mitochondrial data, comparing two RAD analysis pipelines (Stacks and PyRAD). The number of homologous RAD loci decreased dramatically with increasing divergence, as >70% of loci are lost when comparing specimens separated by two mutations on the 700-nt long mitochondrial phylogeny. Species delimitation hypotheses based on the mitochondrial mtMutS gene are largely supported, as six out of nine putative species represented by more than one colony were recovered as discrete, well-supported clades. Significant genetic structure (correlating with geography) was detected within one putative species, suggesting that individuals characterized by the same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS haplotypes formed one well-supported clade within which no population structure was detected, also suggesting that intraspecific variation exists at mtMutS in Chrysogorgia. Despite an impressive decrease in the number of homologous loci across clades, RAD data helped us to fine-tune our interpretations of classical mitochondrial markers used in octocoral species delimitation, and discover previously undetected diversity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of locus detection for Stacks (af) and PyRAD (gl). The number of loci, SNPs and indels detected for specimens separated by 0–16 mutations at the mitochondrial mtMutS gene are shown for the different read coverage (m parameter) and divergence levels (M and n parameters, see text). In PyRAD analyses, ‘s' corresponds to the ‘Wclust' parameter. A full color version of this figure is available at the Heredity journal online.
Figure 2
Figure 2
Information content of the locus catalog built by PyRAD for all 91 Chrysogorgia specimens. Wclust: percent divergence permitted between loci within and across specimens; in addition to the 93% Wclust level used to infer the Chrysogorgia phylogeny, the 89% Wclust level was tested here. A full color version of this figure is available at the Heredity journal online.
Figure 3
Figure 3
Maximum likelihood phylogenetic trees inferred using RAxML for the mitochondrial mtMutS data (a) and RAD loci (bd). Bootstrap node support (1000 replicates for a, 500 replicates for b, c and 200 for d) is presented only for nodes with ⩾70% support. At the tips, colored dots, which represent mtMutS haplotype membership (each color represents a unique haplotype), are followed by specimen identifiers and haplotype numbers. Each tree was rooted to the Atlantic specimen (JAC1018, haplotype J). Genetic structure within clades 1, 2 and 3 were further investigated using a DAPC and TESS (see text and Supplementary Figure S1). Scale bars: substitution/site. A full color version of this figure is available at the Hypertension Research journal online.

References

    1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search. Nucleic Acids Res 25: 3389–3402. - PMC - PubMed
    1. Baco AR, Cairns SD. (2012). Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges. PLoS ONE 7: e45555. - PMC - PubMed
    1. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3: e3376. - PMC - PubMed
    1. Bouchet P, Héros V, Lozouet P, Maestrati P. (2008). A quarter-century of deep-sea malacological exploration in the South and West Pacific: Where do we stand? How far to go? In: Héros V, Cowie RH, Bouchet P (eds). Tropical Deep-Sea Benthos 25, Vol 196, Muséum national d'Histoire naturelle: Paris. pp 9–40.
    1. Calderón I, Garrabou J, Aurelle D. (2006). Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336: 184–197.

Publication types

Substances