Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 Jan;8(1):31-8.
doi: 10.1002/j.1460-2075.1989.tb03345.x.

The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia

Affiliations
Comparative Study

The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia

C Bowler et al. EMBO J. 1989 Jan.

Abstract

Superoxide dismutases (SODs) are metalloproteins that catalyse the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined, where it plays a major role in the defence against toxic reduced oxygen species which are generated in many biological oxidations. Here we report the complete primary structure of a plant manganese superoxide dismutase (MnSOD), deduced from a cDNA clone of Nicotiana plumbaginifolia. The plant protein is highly homologous to MnSODs from other organisms and also contains an N-terminal leader sequence resembling a transit peptide for mitochondrial targeting. The location of the mature protein within the mitochondria has been demonstrated by subcellular fractionation experiments. We have analysed the expression profile of this MnSOD and found that it is dramatically induced during stress conditions, most notably in tissue culture as a result of sugar metabolism and also as part of the pathogenesis response of the plant, being induced by ethylene, salicylic acid, and Pseudomonas syringae infection. This induction is always accompanied by an increase in cytochrome oxidase activity, which suggests a specific protective role for MnSOD during conditions of increased mitochondrial respiration.

PubMed Disclaimer

References

    1. J Biol Chem. 1985 Mar 10;260(5):2605-8 - PubMed
    1. FEBS Lett. 1974 May 15;42(1):68-72 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3820-4 - PubMed
    1. J Biol Chem. 1984 Oct 25;259(20):12595-601 - PubMed
    1. Science. 1987 Sep 25;237(4822):1601-2 - PubMed

Publication types

Associated data

LinkOut - more resources