Pentraxin3 in chronic thromboembolic pulmonary hypertension: a new biomarker for screening from remitted pulmonary thromboembolism
- PMID: 25412085
- PMCID: PMC4239022
- DOI: 10.1371/journal.pone.0113086
Pentraxin3 in chronic thromboembolic pulmonary hypertension: a new biomarker for screening from remitted pulmonary thromboembolism
Abstract
Background: Pentraxin3 (PTX3) is a protein, which has multifaceted effects on innate immunity, angiogenesis, and vascular remodeling then could be a disease marker of acute myocardial infarction, heart failure, vasculitis. In addition, PTX3 has been recognized as a biomarker for pulmonary arterial hypertension, however whether it is the case in chronic thromboembolic pulmonary hypertension (CTEPH) remains unclear. Therefore, we investigated whether PTX3 would be a useful biomarker for detecting CTEPH with respect to differentiation from stable pulmonary thromboembolism (PTE), in comparison to other biomarkers.
Methods: Plasma PTX3 and brain natriuretic peptide (BNP) levels were measured in 70 patients with CTEPH at their first diagnostic right heart catheterization (CTEPH group) and in 20 patients with clinically stable PTE more than three months after the acute episode (control group). The levels of plasma C-reactive protein (CRP) and heart-type fatty acid-binding protein (H-FABP) were also analyzed to compare the diagnostic ability of these biomarkers.
Results: The mean level of PTX3 (ng/mL) was significantly higher in the CTEPH group than in the control group (5.51±4.53 versus 2.01±0.96, respectively), and PTX3 levels had mild negative correlation with cardiac output. BNP levels were also higher in the CTEPH group and better correlated with pulmonary hemodynamics than PTX3. However, a receiver operating characteristic (ROC) curve showed PTX3 levels were better for detecting CTEPH, and could detect CTEPH patients with less severe pulmonary hemodynamics and low plasma BNP levels. There was no significant increase in CRP and H-FABP levels in the CTEPH patients.
Conclusions: Plasma PTX3 level was the most sensitive biomarker of CTEPH. Although plasma PTX3 levels did not correlate with the severity of the pulmonary hemodynamics compared to BNP, high levels in clinically stable patients following PTE should prompt a further work-up for CTEPH, which may lead to an early diagnosis.
Conflict of interest statement
Figures
References
-
- Lang IM, Pesavento R, Bonderman D, Yuan JX (2013) Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J 41: 462–468. - PubMed
-
- Mayer E, Jenkins D, Lindner J, D'Armini A, Kloek J, et al. (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141: 702–710. - PubMed
-
- Kim NH (2006) Assessment of operability in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 3: 584–588. - PubMed
-
- Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, et al. (2011) Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124: 1973–1981. - PubMed
-
- Kim NH, Delcroix M, Jenkins DP, Channick R, Dartevelle P, et al. (2013) Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 62: D92–99. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
