Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr;12(2):290-302.
doi: 10.1007/s13311-014-0314-x.

The Genetics of Spinal Muscular Atrophy: Progress and Challenges

Affiliations
Review

The Genetics of Spinal Muscular Atrophy: Progress and Challenges

Michelle A Farrar et al. Neurotherapeutics. 2015 Apr.

Abstract

Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Clinical features of spinal muscular atrophies (SMAs). (a) Infant with SMA type 1 with severe weakness, bell-shaped chest, and respiratory insufficiency. (b) Thoracolumbar radiograph of patient with SMA type 2 demonstrating thoracolumbar scoliosis. (cg) A 36-year-old patient with distal hereditary motor neuropathy type 5C and mutation in BSCL2 demonstrating (c) distal wasting of the legs, (d–f) early and marked weakness and atrophy in the hands with finger contractures, and (g) pes cavus. (h) Chest radiograph of infant with SMA with respiratory distress type 1 demonstrating eventration of the right hemidiaphragm
Fig. 2
Fig. 2
Proposed mechanisms underlying spinal muscular atrophies (SMAs). Most of these genes associated with SMA encode for ubiquitously expressed proteins with diverse cellular functions: protein translation and synthesis (glycyl-tRNA synthetase, Bernardinelli-Seip congenital lipodystrophy 2), RNA/DNA metabolism (senataxin, immunoglobulin μ-binding protein 2), axonal guidance and trafficking [heat shock protein (HSP)27, dynactin 1, pleckstrin homology domain containing, family G (with RhoGef domain) member 5], cellular protection (HSP22, HSP27), and apoptosis (HSP27). snRNP = small nuclear ribonucleic particles; SMN = survival motor neuron

References

    1. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–165. - PubMed
    1. Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet. 1978;15:409–413. - PMC - PubMed
    1. Russman BS. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol. 2007;22:946–951. - PubMed
    1. Dressman D, Ahearn ME, Yariz KO, et al. X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping. Genet Med. 2007;9:52–60. - PubMed
    1. Ramser J, Ahearn ME, Lenski C, et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet. 2008;82:188–193. - PMC - PubMed

Publication types

MeSH terms