Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan;39(1A):120-6.

Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells

Affiliations
  • PMID: 2541731

Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells

U Klöckner et al. Arzneimittelforschung. 1989 Jan.

Abstract

Calcium antagonists relax vascular smooth muscle cells (VSM) by decreasing Ca-influx and intracellular Ca-load. In isolated VSM, Ca-influx was measured as Ca-current by the voltage clamp technique applied to a patch of membrane (single-channel current) or to the whole cell (whole-cell current ICa). Gallopamil exerted Ca-antagonism mostly by reducing channel availability, i.e. the probability that the Ca-channel opens upon depolarization. Whole-cell-Ca-currents revealed prominent frequency dependence, i.e. reduction of ICa increased with the number of depolarizations. In addition, the gallopamil effect was voltage-dependent such that depolarized myocytes were more sensitive than hyperpolarized cells. The dihydropyridine nitrendipine abbreviated the life time which the Ca-channel stood in the open state and it hindered the channel to re-open again. Reduction of availability was found only after a prolonged application. In whole cell ICa, nitrendipine accelerated the inactivation time course. The Ca-antagonistic effect was voltage-dependent but not frequency-dependent. Potassium agonists are supposed to activate K-channels thereby hyperpolarizing the membrane, hyperpolarization shuts off the Ca-channels and thereby reduces Ca-influx. The K-agonists cromakalim, (+) niguldipine and diazoxide activated the Ca-dependent maxi K-channel (inside-out patches studied at [Ca2+]c of 50 nmol/l or 500 nmol/l. They increased the open probability mainly by decreasing the long closures between the channel openings. The K-agonists can repolarize the cell once it excited and suppress further excitability.

PubMed Disclaimer

MeSH terms

LinkOut - more resources