Malondialdehyde-acetaldehyde adducts and anti-malondialdehyde-acetaldehyde antibodies in rheumatoid arthritis
- PMID: 25417811
- PMCID: PMC5469548
- DOI: 10.1002/art.38969
Malondialdehyde-acetaldehyde adducts and anti-malondialdehyde-acetaldehyde antibodies in rheumatoid arthritis
Abstract
Objective: Malondialdehyde-acetaldehyde (MAA) adducts are a product of oxidative stress associated with tolerance loss in several disease states. This study was undertaken to investigate the presence of MAA adducts and circulating anti-MAA antibodies in patients with rheumatoid arthritis (RA).
Methods: Synovial tissue from patients with RA and patients with osteoarthritis (OA) were examined for the presence of MAA-modified and citrullinated proteins. Anti-MAA antibody isotypes were measured in RA patients (n = 1,720) and healthy controls (n = 80) by enzyme-linked immunosorbent assay. Antigen-specific anti-citrullinated protein antibodies (ACPAs) were measured in RA patients using a multiplex antigen array. Anti-MAA isotype concentrations were compared in a subset of RA patients (n = 80) and matched healthy controls (n = 80). Associations of anti-MAA antibody isotypes with disease characteristics, including ACPA positivity, were examined in all RA patients.
Results: Expression of MAA adducts was increased in RA synovial tissue compared to OA synovial tissue, and colocalization with citrullinated proteins was found. Increased levels of anti-MAA antibody isotypes were observed in RA patients compared to controls (P < 0.001). Among RA patients, anti-MAA antibody isotypes were associated with seropositivity for ACPAs and rheumatoid factor (P < 0.001) in addition to select measures of disease activity. Higher anti-MAA antibody concentrations were associated with a greater number of positive antigen-specific ACPA analytes (expressed at high titer) (P < 0.001) and a higher ACPA score (P < 0.001), independent of other covariates.
Conclusion: MAA adduct formation is increased in RA and appears to result in robust antibody responses that are strongly associated with ACPAs. These results support speculation that MAA formation may be a cofactor that drives tolerance loss, resulting in the autoimmune responses characteristic of RA.
Copyright © 2015 by the American College of Rheumatology.
Figures




Comment in
-
Editorial: citrullination, and carbamylation, and malondialdehyde-acetaldehyde! Oh my! Entering the forest of autoantigen modifications in rheumatoid arthritis.Arthritis Rheumatol. 2015 Mar;67(3):604-8. doi: 10.1002/art.38970. Arthritis Rheumatol. 2015. PMID: 25469991 No abstract available.
References
-
- Freeman TL, Haver A, Duryee MJ, Tuma DJ, Klassen LW, Hamel FG, et al. Aldehydes in cigarette smoke react with the lipid peroxidation product malonaldehyde to form fluorescent protein adducts on lysines. Chem Res Toxicol. 2005;18(5):817–24. - PubMed
-
- Hill GE, Miller JA, Baxter BT, Klassen LW, Duryee MJ, Tuma DJ, et al. Association of malondialdehyde-acetaldehyde (MAA) adducted proteins with atherosclerotic-induced vascular inflammatory injury. Atherosclerosis. 1998;141(1):107–16. - PubMed
-
- Thiele GM, Klassen LW, Tuma DJ. Formation and immunological properties of aldehyde-derived protein adducts following alcohol consumption. Methods Mol Biol. 2008;447:235–57. - PubMed
-
- Rolla R, Vay D, Mottaran E, Parodi M, Traverso N, Arico S, et al. Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease. Hepatology. 2000;31(4):878–84. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources