Evidence for a multi-site model of the rat brain sigma receptor
- PMID: 2542066
- DOI: 10.1016/0014-2999(89)90200-8
Evidence for a multi-site model of the rat brain sigma receptor
Abstract
Irradiation of rat brain membranes with light of 254 nm, a treatment which modifies ultra-violet absorbing residues in proteins, decreased binding of both [3H](+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ([ 3H](+)-3-PPP) and [3H]1,3-di-o-tolylguanidine ([3H]DTG) to sigma receptors. For [3H](+)-3-PPP, this was due to a decreased Bmax. In contrast, irradiation markedly increased binding of [3H](+)-N-allylnormetazocine ([3H](+)-SKF 10,047) due to a decrease in the Kd. Both unlabeled DTG and haloperidol were competitive inhibitors of [3H](+)-3-PPP binding to untreated membranes, causing an increase in the Kd and no change in the Bmax. The benzomorphans, (+)-SKF 10,047 and (+)-pentazocine, were uncompetitive inhibitors, causing a decrease in both the Kd and Bmax for [3H](+)-3-PPP. Finally, the ability of DTG and (+)-3-PPP to inhibit binding of [3H](+)-SKF 10,047 was markedly reduced by ultra-violet irradiation, whereas irradiation had little effect on the potency of unlabeled (+)-SKF 10,047 and (+)-pentazocine. These data suggest that sigma-related (+)-benzomorphans and non-benzomorphans interact either with distinct, allosterically coupled sites on the same sigma receptor macromolecule or with different populations of sigma receptor types.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
