Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;53(1):88-94.
doi: 10.1111/j.1471-4159.1989.tb07298.x.

Periodate-modified gangliosides enhance surface binding of tetanus toxin to PC12 pheochromocytoma cells

Affiliations

Periodate-modified gangliosides enhance surface binding of tetanus toxin to PC12 pheochromocytoma cells

A Nathan et al. J Neurochem. 1989 Jul.

Abstract

The interaction of 125I-labeled tetanus toxin with PC12 pheochromocytoma cells in monolayer cultures has been examined. Under regular growth conditions, the PC12 cells bind 125I-tetanus toxin to a limited degree compared with dissociated cerebral neuron cultures. After exposure to nerve growth factor for 2 days in low serum-containing media with growth factor supplements, binding of toxin increases over twofold compared with untreated PC12 cells. Binding can also be enhanced (greater than 2.5-fold) after treatment of cells with 2 mM sodium metaperiodate for 20 min. Dissociated cerebral neurons but not fibroblasts in cell culture bind more toxin after periodate treatment. The effect of periodate can be abolished by 5 mM sodium borohydride. A ganglioside isolated from periodate-treated PC12 cells and tentatively identified as GT1b [(N-acetylneuraminyl)galactosyl-N-acetylgalactosaminyl(N- acetylneuraminyl-N-acetylneuraminyl)-galactosyl-glucosylceramide] binds 125I-tetanus toxin on silica gel chromatoplates and on nitrocellulose paper. There are no indications to suggest binding to a polypeptide from treated cells after polyacrylamide gel electrophoresis. Cells artificially supplemented with GT1b and subsequently treated with periodate effectively bind the toxin. The data suggest that modified sialyl groups linked to gangliosides, and not to proteins, are preferential targets for tetanus toxin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources