Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun;9(6):2020-32.
doi: 10.1523/JNEUROSCI.09-06-02020.1989.

Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase

Affiliations

Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase

L L Lou et al. J Neurosci. 1989 Jun.

Abstract

The multifunctional Ca2+/calmodulin-dependent protein kinase (multifunctional CaM kinase) may be an important mediator for neurotransmitters and hormones that utilize Ca2+ as a "second messenger." We examined the ability of autophosphorylation to convert the multifunctional CaM kinase to a Ca2+/calmodulin-independent (autonomous) form to determine whether autophosphorylation is a mechanism for short- or long-term enhancement of Ca2+ action. As the kinase incorporates phosphate during continuous stimulation by Ca2+/calmodulin, its ability to phosphorylate exogenous substrates becomes increasingly autonomous. Withdrawal of Ca2+ after a critical level of phosphate incorporation is reached leads to a "burst" or rapid increase in Ca2+-independent autophosphorylation. The "burst" of autophosphorylation is distinct from the initial Ca2+-dependent autophosphorylation, however, since it inhibits substrate phosphorylation. Both Ca2+-dependent and Ca2+-independent substrate phosphorylation are inhibited by this autonomous autophosphorylation. Thus, autophosphorylation has a dual role in modulating the activity of multifunctional CaM kinase. It initially enables the kinase to continue phosphorylating substrates after Ca2+ levels decline, but it eventually suppresses this autonomous activity. Tryptic phosphopeptide mapping demonstrates that appearance of phosphothreonine-containing peptides is common to several conditions used to generate an autonomous enzyme. Sequencing reveals the critical "autonomy" site to be threonine286. The inhibitory mode of autophosphorylation involves 3 additional phosphopeptides containing a serine and a threonine residue.

PubMed Disclaimer

Publication types