Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Nov;18(100):265-71.

Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer

Affiliations
Review

Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer

Michael S Magee et al. Discov Med. 2014 Nov.

Abstract

Chimeric antigen receptor (CAR)-expressing T cells have demonstrated potent clinical efficacy in patients with B cell malignancies. However, the use of CAR-T cell therapy targeting other cancers has, in part, been limited by both the induction of antigen-specific toxicities targeting normal tissues expressing the target-antigen, and the extreme potency of CAR-T cell treatments resulting in life-threatening cytokine-release syndromes. Herein, we discuss toxicities associated with CAR-T cell therapy in the clinic. Further, we discuss potential clinical interventions to ameliorate these toxicities and the application of preclinical animal models to predict the clinical utility of CAR-T cell therapy.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Chimeric Antigen Receptors.
Chimeric antigen receptors (CARs) combine antigen-recognizing variable regions (scFVs) from monoclonal antibodies (mAb) with intracellular T-cell signaling domains. First generation receptors utilized the CD3ζ chain of the T cell receptor (TCR) complex, while second and third generation receptors incorporate either one or two costimulatory singals, respectively, typically derived from B7 family molecules (CD28, ICOS) and/or the TNF superfamily (4–1BB, OX40, CD27). CARs are typically inserted into primary T cells via retroviral-mediated gene transfer.

References

    1. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer immunology research 2(2):112–120, 2014. - PMC - PubMed
    1. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of Murine Colitis and its Associated Cancer by Carcinoembryonic Antigen-Specific Regulatory T Cells. Mol Ther, 2014. - PMC - PubMed
    1. Bleumer I, Knuth A, Oosterwijk E, Hofmann R, Varga Z, Lamers C, Kruit W, Melchior S, Mala C, Ullrich S, De Mulder P, Mulders PF, Beck J. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. Br J Cancer 90(5):985–990, 2004. - PMC - PubMed
    1. Bos R, Van Duikeren S, Morreau H, Franken K, Schumacher TN, Haanen JB, Van Der Burg SH, Melief CJ, Offringa R. Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res. 68(20):8446–8455, 2008. - PubMed
    1. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, Olszewska M, Bernal Y, Pegram H, Przybylowski M, Hollyman D, Usachenko Y, Pirraglia D, Hosey J, Santos E, Halton E, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011. - PMC - PubMed

Publication types

Substances

LinkOut - more resources