Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 26;9(11):e113934.
doi: 10.1371/journal.pone.0113934. eCollection 2014.

Spatially explicit trends in the global conservation status of vertebrates

Affiliations

Spatially explicit trends in the global conservation status of vertebrates

Ana S L Rodrigues et al. PLoS One. .

Erratum in

Abstract

The world's governments have committed to preventing the extinction of threatened species and improving their conservation status by 2020. However, biodiversity is not evenly distributed across space, and neither are the drivers of its decline, and so different regions face very different challenges. Here, we quantify the contribution of regions and countries towards recent global trends in vertebrate conservation status (as measured by the Red List Index), to guide action towards the 2020 target. We found that>50% of the global deterioration in the conservation status of birds, mammals and amphibians is concentrated in <1% of the surface area, 39/1098 ecoregions (4%) and eight/195 countries (4%) - Australia, China, Colombia, Ecuador, Indonesia, Malaysia, Mexico, and the United States. These countries hold a third of global diversity in these vertebrate groups, partially explaining why they concentrate most of the losses. Yet, other megadiverse countries - most notably Brazil (responsible for 10% of species but just 1% of deterioration), plus India and Madagascar - performed better in conserving their share of global vertebrate diversity. Very few countries, mostly island nations (e.g. Cook Islands, Fiji, Mauritius, Seychelles, and Tonga), have achieved net improvements. Per capita wealth does not explain these patterns, with two of the richest countries - United States and Australia - fairing conspicuously poorly. Different countries were affected by different combinations of threats. Reducing global rates of biodiversity loss will require investment in the regions and countries with the highest responsibility for the world's biodiversity, focusing on conserving those species and areas most in peril and on reducing the drivers with the highest impacts.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Spatially explicit trends in the global conservation status of vertebrates.
Mapped as the variation across space in the weighted change in Red List status per year, across three types of spatial units: hexagons (equal-area, ∼23,322 km2), ecoregions (large biogeographic units). and countries (grouped according to sovereignty; e.g. New Caledonia within France). Magenta corresponds to spatial units that have made a net negative contribution to the global vertebrate conservation status as measured through the Red List Index, green to units that made a net positive contribution; grey regions (Antarctica) have no species. In (C), the island nations of Tonga, Cook Islands, Seychelles, Mauritius and Fiji (all with positive weighted change in the Red List status per year) are indicated by a dashed circle.
Figure 2
Figure 2. Country contributions towards trends in the global conservation status of amphibians, birds and mammals.
Mapped as the variation across countries in the weighted change in Red List status per year, for different taxonomic groups. The same color scale is used across panels (and in Figure 1C) so shades are directly comparable. In (B), the island nations of Tonga, Cook Islands, Seychelles, Mauritius and Fiji are indicated by a dashed circle.
Figure 3
Figure 3. Contribution per country of different threats to the trends in the global conservation status of vertebrates.
Mapped as the weighted impact of each threat type to the deterioration in global species conservation status, across countries. The same color scale is used across panels, hence shades are directly comparable.
Figure 4
Figure 4. Relationship between each country's responsibility to conservation and its contribution to changes in species' global conservation status.
Responsibility measured by: (A) weighted endemism; (B) weighted threat. Dashed lines are the regression lines fitted through the origin: (A) R2 = 0.57; (B) R2 = 0.70 (n = 195; p<0.001). Circle size is proportional to each country's Gross Domestic Product based on purchasing-power-parity per capita GDP in 2009 . Circle color indicates the main threat (or combination of threats) for selected countries (see Table S2 in Supporting Information S1 for country codes).

References

    1. Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Science. 1995;269:347–350 doi:10.1126/science.269.5222.347. - DOI - PubMed
    1. Convention on Biological Diversity (n.d.). Biodiversity Target. 2010. Available: http://www.cbd.int/2010-target/. Accessed 31 March 2010.
    1. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, et al. Global biodiversity: indicators of recent declines. Science. 2010;328:1164–1168 doi:10.1126/science.1187512. - DOI - PubMed
    1. Secretariat of the Convention on Biological Diversity. Strategic Plan for Biodiversity, 2011–2020. COP 10 Outcomes - Decisions (Advance Unedited Texts). Nagoya, Japan: Convention on Biological Diversity. 2010. Available: http://www.cbd.int/nagoya/outcomes/. Accessed 18 November 2010.
    1. Jones JPG, Collen B, Atkinson G, Baxter PWJ, Bubb P, et al. The why, what, and how of global biodiversity indicators beyond the 2010 Target. Conservation Biology. 2011;25:450–457 doi:–10.1111/j.15231739.2010.01605.x. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources