Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb 1;308(3):C198-208.
doi: 10.1152/ajpcell.00336.2014. Epub 2014 Nov 26.

The primary cilium as sensor of fluid flow: new building blocks to the model. A review in the theme: cell signaling: proteins, pathways and mechanisms

Affiliations
Review

The primary cilium as sensor of fluid flow: new building blocks to the model. A review in the theme: cell signaling: proteins, pathways and mechanisms

Helle A Praetorius. Am J Physiol Cell Physiol. .

Abstract

The primary cilium is an extraordinary organelle. For many years, it had the full attention of only a few dedicated scientists fascinated by its uniqueness. Unexpectedly, after decades of obscurity, it has moved very quickly into the limelight with the increasing evidence of its central role in the many genetic variations that lead to what are now known as ciliopathies. These studies implicated unique biological functions of the primary cilium, which are not completely straightforward. In parallel, and initially completely unrelated to the ciliopathies, the primary cilium was characterized functionally as an organelle that makes cells more susceptible to changes in fluid flow. Thus the primary cilium was suggested to function as a flow-sensing device. This characterization has been substantiated for many epithelial cell types over the years. Nevertheless, part of the central mechanism of signal transduction has not been explained, largely because of the substantial technical challenges of working with this delicate organelle. The current review considers the recent advances that allow us to fill some of the holes in the model of signal transduction in cilium-mediated responses to fluid flow and to pursue the physiological implications of this peculiar organelle.

Keywords: ATP; calcium; flow; in vivo; primary cilia.

PubMed Disclaimer

Substances