Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 26;57(24):10424-42.
doi: 10.1021/jm5010336. Epub 2014 Dec 15.

Optimization of sphingosine-1-phosphate-1 receptor agonists: effects of acidic, basic, and zwitterionic chemotypes on pharmacokinetic and pharmacodynamic profiles

Affiliations

Optimization of sphingosine-1-phosphate-1 receptor agonists: effects of acidic, basic, and zwitterionic chemotypes on pharmacokinetic and pharmacodynamic profiles

John Skidmore et al. J Med Chem. .

Abstract

The efficacy of the recently approved drug fingolimod (FTY720) in multiple sclerosis patients results from the action of its phosphate metabolite on sphingosine-1-phosphate S1P1 receptors, while a variety of side effects have been ascribed to its S1P3 receptor activity. Although S1P and phospho-fingolimod share the same structural elements of a zwitterionic headgroup and lipophilic tail, a variety of chemotypes have been found to show S1P1 receptor agonism. Here we describe a study of the tolerance of the S1P1 and S1P3 receptors toward bicyclic heterocycles of systematically varied shape and connectivity incorporating acidic, basic, or zwitterionic headgroups. We compare their physicochemical properties, their performance in in vitro and in vivo pharmacokinetic models, and their efficacy in peripheral lymphocyte lowering. The campaign resulted in the identification of several potent S1P1 receptor agonists with good selectivity vs S1P3 receptors, efficacy at <1 mg/kg oral doses, and developability properties suitable for progression into preclinical development.

PubMed Disclaimer

MeSH terms

LinkOut - more resources