Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep;15(1):11-8.
doi: 10.1515/hmbci-2013-0035.

Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects

Affiliations
Review

Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects

Sally Martin. Horm Mol Biol Clin Investig. 2013 Sep.

Abstract

Adipocytes are specialized cells that function to store energy in the form of lipids, predominantly triglycerides (TGs), and as a regulatory system contributing to metabolic homoeostasis through the production and secretion of hormones and cytokines. The regulation of lipid homeostasis by adipose tissue is an important aspect of whole-body metabolism. Owing to the central nature of adipose tissue in lipid metabolism, dysregulation has wide-ranging effects, contributing to disorders as diverse as diabetes, cardiovascular disease, cancer, and neurodegeneration. Excess lipids are stored in specialized organelles called lipid droplets (LDs). The surface of the lipid droplet can be considered a highly regulated membrane domain that both protects the contents of the LD from unregulated lipolysis and the cell from the cytotoxic effects of elevated free fatty acids. The surface of the LD is coated with a variety of regulatory proteins, either resident or transiently associated, including enzymes involved in the breakdown of TG, lipid transport proteins, and cofactors. Recent studies have begun to unravel the range of LD-associated proteins and to define their functional significance. Importantly, the involvement of LD proteins in pathophysiological disorders is beginning to be understood. This review will outline recent advances in defining the diversity of LD-associated proteins and their links to metabolic disorders including the integral membrane protein, caveolin-1 (CAV1). Analysis of the role of CAV1 in adipose tissue has highlighted the interconnectedness between the regulation of lipid storage and the function of the adipocyte plasma membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources