Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore
- PMID: 25445707
- PMCID: PMC4430462
- DOI: 10.1016/j.bbagen.2014.11.009
Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore
Abstract
Background: Opening of the mitochondrial permeability transition pore is the underlying cause of cellular dysfunction during diverse pathological situations. Although this bioenergetic entity has been studied extensively, its molecular componentry is constantly debated. Cyclophilin D is the only universally accepted modulator of this channel and its selective ligands have been proposed as therapeutic agents with the potential to regulate pore opening during disease.
Scope of review: This review aims to recapitulate known molecular determinants necessary for Cyclophilin D activity regulation and binding to proposed pore constituents thereby regulating the mitochondrial permeability transition pore.
Major conclusions: While the main target of Cyclophilin D is still a matter of further research, permeability transition is finely regulated by post-translational modifications of this isomerase and its catalytic activity facilitates pore opening.
General significance: Complete elucidation of the molecular determinants required for Cyclophilin D-mediated control of the mitochondrial permeability transition pore will allow the rational design of therapies aiming to control disease phenotypes associated with the occurrence of this unselective channel. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Keywords: Cyclophilin-D; Mitochondrial permeability transition; Peptidyl-prolyl cis-trans isomerase.
Copyright © 2014 Elsevier B.V. All rights reserved.
Figures




Similar articles
-
Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection?Cell Mol Life Sci. 2017 Aug;74(15):2795-2813. doi: 10.1007/s00018-017-2502-4. Epub 2017 Apr 4. Cell Mol Life Sci. 2017. PMID: 28378042 Free PMC article. Review.
-
HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart.Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6466-75. doi: 10.1073/pnas.1508760112. Epub 2015 Nov 9. Proc Natl Acad Sci U S A. 2015. PMID: 26553996 Free PMC article.
-
The mitochondrial permeability transition pore and cyclophilin D in cardioprotection.Biochim Biophys Acta. 2011 Jul;1813(7):1316-22. doi: 10.1016/j.bbamcr.2011.01.031. Epub 2011 Feb 3. Biochim Biophys Acta. 2011. PMID: 21295622 Review.
-
Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore.Circ J. 2013;77(5):1111-22. doi: 10.1253/circj.cj-13-0321. Epub 2013 Mar 29. Circ J. 2013. PMID: 23538482 Free PMC article. Review.
-
Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective.J Mol Cell Cardiol. 2015 Jan;78:80-9. doi: 10.1016/j.yjmcc.2014.09.026. Epub 2014 Oct 2. J Mol Cell Cardiol. 2015. PMID: 25281838 Review.
Cited by
-
Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension.Antioxid Redox Signal. 2019 Oct 1;31(10):710-721. doi: 10.1089/ars.2018.7632. Epub 2019 Feb 28. Antioxid Redox Signal. 2019. PMID: 30618267 Free PMC article.
-
Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration?Biomolecules. 2023 Aug 18;13(8):1265. doi: 10.3390/biom13081265. Biomolecules. 2023. PMID: 37627330 Free PMC article. Review.
-
Mitochondrial-Lysosomal Axis in Acetaminophen Hepatotoxicity.Front Pharmacol. 2018 May 15;9:453. doi: 10.3389/fphar.2018.00453. eCollection 2018. Front Pharmacol. 2018. PMID: 29867464 Free PMC article. Review.
-
Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism.Sci Rep. 2015 Oct 30;5:15981. doi: 10.1038/srep15981. Sci Rep. 2015. PMID: 26515038 Free PMC article.
-
Microbial cyclophilins: specialized functions in virulence and beyond.World J Microbiol Biotechnol. 2017 Aug 8;33(9):164. doi: 10.1007/s11274-017-2330-6. World J Microbiol Biotechnol. 2017. PMID: 28791545 Review.
References
-
- Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077–2099. - PubMed
-
- Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 1976;251:5069–5077. - PubMed
-
- Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria I The protective mechanisms. Arch. Biochem. Biophys. 1979;195:453–459. - PubMed
-
- Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria II Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 1979;195:460–467. - PubMed
-
- Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria III Transitional Ca2+ release. Arch. Biochem. Biophys. 1979;195:468–477. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials