Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons
- PMID: 25446720
- DOI: 10.1016/j.expneurol.2014.10.022
Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons
Abstract
Chronically axotomized motoneurons progressively fail to regenerate their axons. Since axonal regeneration is associated with the increased expression of tubulin, actin and GAP-43, we examined whether the regenerative failure is due to failure of chronically axotomized motoneurons to express and sustain the expression of these regeneration associated genes (RAGs). Chronically axotomized facial motoneurons were subjected to a second axotomy to mimic the clinical surgical procedure of refreshing the proximal nerve stump prior to nerve repair. Expression of α1-tubulin, actin and GAP-43 was analyzed in axotomized motoneurons using in situ hybridization followed by autoradiography and silver grain quantification. The expression of these RAGs by acutely axotomized motoneurons declined over several months. The chronically injured motoneurons responded to a refreshment axotomy with a re-increase in RAG expression. However, this response to a refreshment axotomy of chronically injured facial motoneurons was less than that seen in acutely axotomized facial motoneurons. These data demonstrate that the neuronal RAG expression can be induced by injury-related signals and does not require acute deprivation of target derived factors. The transient expression is consistent with a transient inflammatory response to the injury. We conclude that transient RAG expression in chronically axotomized motoneurons and the weak response of the chronically axotomized motoneurons to a refreshment axotomy provides a plausible explanation for the progressive decline in regenerative capacity of chronically axotomized motoneurons.
Keywords: Actin; Axotomy; GAP-43; Motoneuron; Neurofilament; Regeneration associated genes; Tubulin.
Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
