Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jan;110(1):453.
doi: 10.1007/s00395-014-0453-6. Epub 2014 Dec 2.

Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop

Affiliations
Review

Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop

Jack M J Pickard et al. Basic Res Cardiol. 2015 Jan.

Abstract

In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect'... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Connecting the limb to the heart in RIC. This figure shows the potential interplay between the neural pathway (green solid lines) and humoral pathway (broken red lines) in mediating RIC cardioprotection. Cycles of brief upper limb ischemia/reperfusion induced by inflation/deflation of a cuff placed on the upper arm produce the local release of autacoids, which then activate local sensory afferent neurons. One experimental study has shown the involvement of the neuronal activity in the brainstem dorsal motor vagal nucleus (DMVN) in RIC cardioprotection—this provides parasympathetic innervation of the left ventricle and other internal organs. A circulating blood-borne cardioprotective factor(s) is produced in response to the RIC stimulus downstream of the local sensory afferent neurons in the upper limb, but the actual source for its release is not currently known. Potential sites of release of the cardioprotective factor(s) include: (1) from the conditioned limb itself, (2) from the central nervous system (brainstem), (3) from pre-/post-ganglionic parasympathetic nerve endings within the heart (broken green lines); and (4) from a non-conditioned remote organ/tissue receiving parasympathetic innervation

References

    1. Abdul-Ghani S, Heesom KJ, Angelini GD, Suleiman MS. Cardiac phosphoproteomics during remote ischemic preconditioning: a role for the sarcomeric Z-disk proteins. Biomed Res Int. 2014;2014:767812. doi: 10.1155/2014/767812. - DOI - PMC - PubMed
    1. Abu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A, Davidson B. Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse liver. Liver Transpl. 2011;17:610–619. doi: 10.1002/lt.22272. - DOI - PubMed
    1. Abu-Amara M, Yang SY, Quaglia A, Rowley P, Tapuria N, Fuller B, Davidson B, Seifalian A. The hepatic soluble guanylyl cyclase-cyclic guanosine monophosphate pathway mediates the protection of remote ischemic preconditioning on the microcirculation in liver ischemia-reperfusion injury. Transplantation. 2012;93:880–886. doi: 10.1097/TP.0b013e31824cd59d. - DOI - PubMed
    1. Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, Boyle JR, Varty K, Kharbanda RK, Dutka DP, Gaunt ME. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation. 2007;116:I98–I105. doi: 10.1161/circulationaha.106.679167. - DOI - PubMed
    1. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources