Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 15;92(4):607-17.
doi: 10.1016/j.bcp.2014.10.008. Epub 2014 Oct 30.

Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction

Affiliations

Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction

Abdelali Agouni et al. Biochem Pharmacol. .

Abstract

Growing evidence suggests that hepatic-insulin resistance is sufficient to promote progression to cardiovascular disease. We have shown previously that liver-specific protein-tyrosine-phosphatase 1B (PTP1B) deficiency improves hepatic-insulin sensitivity and whole-body glucose homeostasis. The aim of this study was to investigate the impact of liver-specific PTP1B-deficiency (L-PTP1B-/-) on cardiac and peripheral vascular function, with special emphasis on endothelial function in the context of high-fat diet (HFD)-induced obesity. L-PTP1B-/- mice exhibited an improved glucose and lipid homeostasis and increased insulin sensitivity, without changes in body weight. HFD-feeding increased systolic blood pressure (BP) in both L-PTP1B-/- and control littermates; however, this was significantly lower in L-PTP1B-/- mice. HFD-feeding increased diastolic BP in control mice only, whilst the L-PTP1B-/- mice were completely protected. The analysis of the function of the left ventricle (LV) revealed that HFD-feeding decreased LV fractional shortening in control animals, which was not observed in L-PTP1B-/- mice. Importantly, HFD feeding significantly impaired endothelium-dependent vasorelaxation in response to acetylcholine in aortas from control mice, whilst L-PTP1B-/- mice were fully protected. This was associated with alterations in eNOS phosphorylation. Selective inhibition of COX-2, using NS-398, decreased the contractile response in response to serotonin (5-HT) only in vessels from control mice. HFD-fed control mice released enhanced levels of prostaglandin E, a vasoconstrictor metabolite; whilst both chow- and HFD-fed L-PTP1B-/- mice released higher levels of prostacylin, a vasorelaxant metabolite. Our data indicate that hepatic-PTP1B inhibition protects against HFD-induced endothelial dysfunction, underscoring the potential of peripheral PTP1B inhibitors in reduction of obesity-associated cardiovascular risk in addition to its anti-diabetic effects.

Keywords: Endothelial dysfunction; Insulin resistance; PTP1B; Tyrosine phosphatase; eNOS.

PubMed Disclaimer

Publication types

Substances