Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 Jul 25;264(21):12238-42.

The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme

Affiliations
  • PMID: 2545704
Free article
Comparative Study

The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme

J M Anderson et al. J Biol Chem. .
Free article

Abstract

Rice seed ADP-glucose pyrophosphorylase cDNA clones were isolated by screening a lambda expression library prepared from rice endosperm poly(A+) RNA with a heterologous antibody raised against the spinach leaf enzyme and subsequently by nucleic acid hybridization. One cDNA plasmid, possessing about 1650 nucleotides, was shown by both DNA and RNA sequence analysis to contain the complete ADP-glucose pyrophosphorylase coding sequence of 483 amino acids. The primary sequence displayed a putative leader peptide presumably required for transport of this nuclear encoded protein into the amyloplasts, a differentiated starch containing plastid. The leader peptide, however, showed little sequence homology with transit peptides displayed by other known nuclear encoded proteins localized in the chloroplasts. A comparison of the primary sequence of the putative mature subunit to the Escherichia coli pyrophosphorylase showed two regions displaying significant homology. These two conserved regions contain residues shown previously to be essential for the allosteric regulation and catalytic activity of the E. coli enzyme. Differences in the primary sequences of the plant and bacterial enzyme may reflect the distinct nature of the allosteric effectors that control these enzymes.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources