Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 23;30(50):15253-60.
doi: 10.1021/la503772g. Epub 2014 Dec 11.

Tunable aggregation by competing biomolecular interactions

Affiliations

Tunable aggregation by competing biomolecular interactions

Gregg A Duncan et al. Langmuir. .

Abstract

Measurements and models are reported for Concanavalin A (ConA) mediated aggregation of dextran coated colloids that is tunable via a competing ConA-glucose interaction. Video and confocal scanning laser microscopy were used to characterize ConA adsorption to dextran colloids and quasi-2D dextran coated colloid aggregation kinetics vs [ConA] and [glucose]. ConA adsorption to, and aggregation rates of, dextran coated colloids increased from negligible values to high coverage and rapid rates for increasing [ConA] in the range 0.1-10 mM and decreasing [glucose] in the range 1-100 mM, consistent with dissociation constant estimates. Analysis of colloidal aggregation kinetics indicates ConA bridge formation is the rate-limiting step controlling the transition from slow to rapid aggregation. Our findings reveal a mechanism for tuning colloidal interactions and aggregation kinetics through specific, competitive biomolecular interactions, which lends insights into aggregation phenomena in mixed synthetic-biomaterial and biological systems.

PubMed Disclaimer

Publication types

LinkOut - more resources