High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
- PMID: 25458909
- PMCID: PMC4459934
- DOI: 10.1021/sb500351f
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
Abstract
Actinobacteria, particularly those of genus Streptomyces, remain invaluable hosts for the discovery and engineering of natural products and their cognate biosynthetic pathways. However, genetic manipulation of these bacteria is often labor and time intensive. Here, we present an engineered CRISPR/Cas system for rapid multiplex genome editing of Streptomyces strains, demonstrating targeted chromosomal deletions in three different Streptomyces species and of various sizes (ranging from 20 bp to 30 kb) with efficiency ranging from 70 to 100%. The designed pCRISPomyces plasmids are amenable to assembly of spacers and editing templates via Golden Gate assembly and isothermal assembly (or traditional digestion/ligation), respectively, allowing rapid plasmid construction to target any genomic locus of interest. As such, the pCRISPomyces system represents a powerful new tool for genome editing in Streptomyces.
Keywords: CRISPR; Cas9; Streptomyces; genome engineering; synthetic guide RNA.
Figures
References
-
- Bibb M. J. (2005) Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8, 208–215. - PubMed
-
- Medema M. H.; Breitling R.; Takano E. (2011) Synthetic biology in Streptomyces bacteria. Methods Enzymol. 497, 485–502. - PubMed
-
- Seto H.; Imai S.; Tsuruoka T.; Satoh A.; Kojima M.; Inouye S.; Sasaki T.; Otake N. (1982) Studies on the biosynthesis of bialaphos (SF-1293). 1. Incorporation of 13C- and 2H-labeled precursors into bialaphos. J. Antibiot. (Tokyo) 35, 1719–1721. - PubMed
-
- Bayer E.; Gugel K. H.; Hagele K.; Hagenmaier H.; Jessipow S.; Konig W. A.; Zahner H. (1972) Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv. Chim. Acta 55, 224–239. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
