Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug;1850(8):1642-60.
doi: 10.1016/j.bbagen.2014.10.008. Epub 2014 Oct 16.

Selenium compounds as therapeutic agents in cancer

Affiliations
Review

Selenium compounds as therapeutic agents in cancer

Aristi P Fernandes et al. Biochim Biophys Acta. 2015 Aug.

Abstract

Background: With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential.

Scope of review: This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds.

Major conclusions: It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein.

General significance: Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.

Keywords: Cell death; Chemotherapeutics; Selenium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources