Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan;70(1):74-80.
doi: 10.1016/j.crad.2014.09.019. Epub 2014 Nov 15.

The detection of β-amyloid plaques in an Alzheimer's disease rat model with DDNP-SPIO

Affiliations

The detection of β-amyloid plaques in an Alzheimer's disease rat model with DDNP-SPIO

D Zhang et al. Clin Radiol. 2015 Jan.

Abstract

Aim: To detect the β-amyloid plaques (Aβ) in a rat model of Alzheimer's disease (AD) using superparamagnetic iron oxide nanoparticles coated with 1,1-dicyano-2-[6-(dimethylamino)-naphthalene-2-yl] propene carboxyl derivative (DDNP-SPIO).

Materials and methods: DDNP-SPIO was prepared in a previous trial. The binding affinity of DDNP-SPIO to Aβ was tested using fluorescence spectrophotometry in vitro. In vivo, five AD rats and five non-AD rats were intravenously injected with DDNP-SPIO at a dose of 76 μmol Fe/kg. Coronal T2*-weighted images were collected at baseline and repeated at 10, 30, and 60 min post-injection. Enhancement features of the two groups were analysed. After imaging, brain specimens were resected for Congo red and Prussian blue staining to assess the binding of DDNP-SPIO to Aβ deposits.

Results: In vitro experiments indicated that the DDNP-SPIO nanoparticles displayed high binding affinities towards Aβ with a Kd value of 29.4 nmol/l. A significant decrease in SI was detected in the hippocampal area of AD rats after intravenous injection of the nanoparticles, but not in non-AD rats. The measurement of the percentage signal loss decreased to 52% in AD rats. In non-AD rats, only 10% signal loss was observed. There was a significant difference between the two groups (t = 4.533, p < 0.05). The signal decrease resulted from the binding of the DDNP-SPIO nanoparticles to the Aβ plaques, which was identified with Congo red and Prussian blue staining.

Conclusion: The DDNP-SPIO nanoparticles could potentially be used for visualizing Aβ plaques, which may be helpful for diagnosing the early stages of AD and monitoring the effects of drug therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources