Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May;2(7):553-8.
doi: 10.1093/protein/2.7.553.

Histidine-15: an important role in the cytotoxic activity of human tumor necrosis factor

Affiliations

Histidine-15: an important role in the cytotoxic activity of human tumor necrosis factor

R Yamamoto et al. Protein Eng. 1989 May.

Abstract

The amino acids that are required for the cytotoxic activity of recombinant human tumor necrosis factor-alpha (TNF) were investigated by chemical modification and oligonucleotide-directed site-specific mutagenesis. TNF contains three histidine residues, located at positions 15, 73 and 78. The histidine-specific reagent diethylpyrocarbonate (DEP) was used to chemically modify TNF. The chemical inactivation of the in vitro cytotoxic activity of this lymphokine (using murine L929 target cells) was found to be time- and dose-dependent. Inactivated TNF failed to compete with fully bioactive [125I]TNF for human MCF-7 target cell receptors. Mutant polypeptides of TNF were genetically engineered by oligonucoleotide-directed site-specific mutagenesis. The cytotoxicity of a double histidine mutant, in which histidine-73 and histidine-78 were replaced with glutamine, was not altered and was chemically inactivated by DEP. Substituting glutamine for histidine-15 resulted in 10-15% of the wild-type bioactivity. Replacing histidine-15 with either asparagine, lysine or glycine resulted in a biologically inactive molecule. The data show that the histidine residue at position 15 is an amino acid that is required for the cytotoxic activity of TNF.

PubMed Disclaimer

MeSH terms

LinkOut - more resources