Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship
- PMID: 25462736
- DOI: 10.1016/j.watres.2014.09.050
Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship
Abstract
Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP₁₉₃a/b, NP₁₁₀a and NP₁₉₄ in the effluent. Moreover, biodegradability was related to the bulkiness of α-substituents and followed α-dimethyl > α-ethyl-α-methyl > α-methyl-α-n-propyl > α-iso-propyl-α-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
