Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan:179:149-56.
doi: 10.1016/j.cbpa.2014.10.003.

Fatmass and obesity associated (FTO) gene regulates gluconeogenesis in chicken embryo fibroblast cells

Fatmass and obesity associated (FTO) gene regulates gluconeogenesis in chicken embryo fibroblast cells

Feng Guo et al. Comp Biochem Physiol A Mol Integr Physiol. 2015 Jan.

Abstract

Fat mass and obesity-associated (FTO) gene was found to be associated with energy homeostasis in mammals, yet the function of chicken FTO is less clear. In this study, chicken embryo fibroblast cells (DF-1) were transiently transfected to over-express (FTO(+)) or to knockdown (FTO−) the chicken FTO gene and were used for the functional analysis. FTO expression was significantly augmented in FTO(+) cells while depressed in FTO(−) cells (P < 0.05). FTO(+) cells had significantly lower glucose yet higher lactic acid (LD) concentrations (P < 0.05) in the culture media, which was associated with significantly up-regulated (P < 0.05) mRNA expression of the rate-limiting gluconeogenic enzymes, glucose-6-phosphatase (G6PC) and the phosphoenolpyruvate carboxykinase-mitochondrial (PEPCK-m). The protein content and enzyme activity of G6PC were also significantly higher (P < 0.05) in FTO(+) cells. Moreover, CCAAT/enhancer-binding protein-beta (C/EBP-beta) and cAMP responsive element binding protein 1 (CREB1), which were found to transcriptionally regulate the expression of G6PC, were increased at the level of both mRNA (P < 0.05) and protein (P < 0.05) in FTO(+)cells. ChIP analysis revealed significantly higher (P < 0.05) binding of C/EBP-beta and phospho-CREB1 to G6PC gene promoter in FTO(+) cells. In addition, the interaction of FTO and C/EBP-beta was significantly enhanced (P < 0.05) in FTO+ cells. Opposite changes in G6PC expression and regulation were observed in FTO(−) cells. Our results indicate that chicken FTO regulates gluconeogenesis in DF-1 cells through enhanced transcriptional regulation of G6PC gene by C/EBP-beta and phospho-CREB1.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources