Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug 5;264(22):13238-44.

Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers

Affiliations
  • PMID: 2546949
Free article

Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers

C P Moxham et al. J Biol Chem. .
Free article

Abstract

In both NIH3T3 cells and HepG2 cells, insulin-like growth factor I (IGF-I) receptors possess two beta-subunits that display different electrophoretic mobilities. Increasing concentrations of IGF-I stimulated the phosphorylation of both beta-subunits to a similar extent, whereas insulin stimulated the phosphorylation of both subunits only at elevated concentrations. Both beta-subunits were immunoprecipitated with p5, an insulin receptor-specific anti-peptide antibody, or with A410, a polyclonal anti-insulin receptor antisera. However, if the tetrameric IGF-I receptor was first dissociated into alpha-beta heterodimers with 1 mM dithiothreitol, only the lower molecular weight beta-subunit was immunoprecipitated. These results suggested that p5 and A410 specifically recognized the lower molecular weight beta-subunit but immunoprecipitated the higher molecular weight beta-subunit because it was present in the same disulfide linked tetramer. Similarly, alpha-IR-3, an antibody specific for the alpha-subunit of the IGF-I receptor, immunoprecipitated both types of beta-subunit from the intact tetramer but only the higher molecular weight beta-subunit from the dissociated heterodimers, suggesting that there are two types of alpha-subunits in the same tetramer and that the alpha-subunit recognized by alpha-IR-3 is only associated with the higher molecular weight beta-subunit. Tryptic phosphopeptide maps of the lower molecular weight beta-subunit of IGF-I receptor were different from the higher molecular weight beta-subunit, but were similar to those of the insulin receptor beta-subunit. Thus, by immunochemical cross-reactivity and structural criteria, the lower molecular weight beta-subunit of the IGF-I receptor was similar to the beta-subunit of insulin receptor. These data suggest that there exists a species of IGF-I receptor that is a hybrid composed of an insulin receptor alpha-beta heterodimer and an IGF-I receptor alpha-beta heterodimer. The existence of such a hybrid receptor could have important functional consequences.

PubMed Disclaimer

MeSH terms

LinkOut - more resources