Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;62(1):1-14.
doi: 10.1152/jn.1989.62.1.1.

Hypoxic changes in hippocampal neurons

Affiliations

Hypoxic changes in hippocampal neurons

J Leblond et al. J Neurophysiol. 1989 Jul.

Abstract

1. Reversible effects of brief periods of anoxia (replacing 95% O2-5% CO2 with 95% N2-5% CO2 for 2-4 min) were studied in CA1 neurons in hippocampal slices (from Sprague-Dawley rats), kept in an interface-type chamber at 33.5 degree. 2. The predominant voltage change during anoxia (N2) was a hyperpolarization, accompanied by a marked fall in resistance and excitability; synaptic potentials were also depressed, especially inhibitory postsynaptic potentials (IPSPs). 3. In voltage-current (V-I) plots, the N2-evoked hypolarization had a reversal potential below -90mV, even when recording with 2 M KCl electrodes and after substituting 90% of medium Cl- with isethionate. The accompanying fall in input resistance (RN) is therefore probably caused by an increase in K conductance (in agreement with previous reports). There was evidence that anomalous rectification enhances the fall in RN but limits the hyperpolarization. 4. These effects of anoxia were not fully blocked by any of the K-channel antagonists tested, including Cs, TEA, 4-AP, quinine and apamin. 5. Intracellular injections of Ca chelators caused a variable depression of N2-evoked reductions in RN. 6. It is unlikely that N2 activates ATP-sensitive K channels as tolbutamide enhanced rather than depressed the hyperpolarization and fall in RN. 7. When early depletion of cellular ATP was prevented by incubation in creatine (25 mM for greater than 1 h), even longer anoxic periods produced only minor changes in potential, RN, and synaptic transmission. 8. It was concluded that activation of K conductance by a rise in cytosolic-free Ca2+ is the most plausible of several possible underlying mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources