Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation
- PMID: 25473287
- PMCID: PMC4251747
- DOI: 10.2147/IJN.S73340
Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation
Abstract
Lipid nanocarriers are becoming a versatile platform for oral delivery of lipophilic drugs. In this article, we aimed to explore the gastrointestinal behaviors of lipid nanoparticles and the effect of PEGylation on oral absorption of fenofibrate (FN), a Biopharmaceutics Classification System (BCS) II model drug. FN-loaded PEGylated lipid nanoparticles (FN-PLNs) were prepared by the solvent-diffusion method and characterized by particle size distribution, morphology, Fourier transform infrared spectroscopy, and drug release. Lipolytic experiments were performed to assess the resistance of lipid nanoparticles against pancreatic lipase. Pharmacokinetics was evaluated in rats after oral administration of FN preparations. The obtained FN-PLNs were 186.7 nm in size with an entrapment efficiency of >95%. Compared to conventional lipid nanoparticles, PLNs exhibited slower drug release in the lipase-containing medium, strikingly reduced mucin binding, and suppressed lipolysis in vitro. Further, oral absorption of FN was significantly enhanced using PLNs with relative bioavailability of 123.9% and 157.0% to conventional lipid nanoparticles and a commercial formulation (Lipanthyl(®)), respectively. It was demonstrated that reduced mucin trapping, suppressed lipolysis, and/or improved mucosal permeability were responsible for increased oral absorption. These results facilitated a better understanding of the in vivo fate of lipid nanoparticles, and suggested the potential of PLNs as oral carriers of BCS II drugs.
Keywords: PEGylation; absorption mechanism; fenofibrate; lipid nanoparticles; oral bioavailability.
Figures









References
-
- Xu Y, Liu X, Lian R, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int J Pharm. 2012;438(1–2):287–295. - PubMed
-
- Kayaert P, Van den Mooter G. An investigation of the adsorption of hydroxypropylmethyl cellulose 2910 5 mPa s and polyvinylpyrrolidone K90 around Naproxen nanocrystals. J Pharm Sci. 2012;101(10):3916–3923. - PubMed
-
- Zhang X, Sun N, Wu B, Lu Y, Guan T, Wu W. Physical characterization of lansoprazole/PVP solid dispersion prepared by fluid-bed coating technique. Powder Technol. 2008;182(3):480–485.
-
- Sun N, Zhang X, Lu Y, Wu W. In vitro evaluation and pharmacokinetics in dogs of solid dispersion pellets containing Silybum marianum extract prepared by fluid-bed coating. Planta Med. 2008;74(2):126–132. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous