Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul 24;983(1):56-64.
doi: 10.1016/0005-2736(89)90380-5.

Protection of cells against membrane damage by haemolytic agents: divalent cations and protons act at the extracellular side of the plasma membrane

Affiliations

Protection of cells against membrane damage by haemolytic agents: divalent cations and protons act at the extracellular side of the plasma membrane

C L Bashford et al. Biochim Biophys Acta. .

Abstract

The protective effect of Ca2+, Zn2+ and H+ against membrane damage induced by different haemolytic agents has been studied by measuring monovalent cation leakage and haemolysis of erythrocytes, and phosphoryl[3H]choline and adenine nucleotide leakage from Lettre cells prelabelled with [3H]choline. The protective effect of Ca2+ and Zn2+ on erythrocytes damaged by Staphylococcus aureus alpha-toxin, Sendai virus or melittin is unaffected by the addition of A23187, even though this ionophore greatly increases the uptake of 45Ca2+ or 65Zn2+. The same result has been found for the protective effect of Zn2+ on Lettre cells damaged by S. aureus alpha-toxin, Sendai virus, melittin or Triton X-100. Leakage of phosphoryl[3H]choline from prelabelled Lettre cells is inhibited if extracellular pH is lowered; lowering the intracellular pH without affecting the extracellular pH, affords little protection. It is concluded that Ca2+, Zn2+ and H+ protect cells against membrane damage induced by haemolytic agents by an action at the extracellular side of the plasma membrane.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources