The inositol 1,4,5-trisphosphate-binding site in adrenal cortical cells is distinct from the endoplasmic reticulum
- PMID: 2547781
The inositol 1,4,5-trisphosphate-binding site in adrenal cortical cells is distinct from the endoplasmic reticulum
Abstract
The distribution of binding sites for the calcium-mobilizing second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) was investigated in subcellular fractions of bovine adrenal cortex. The [3H]Ins(1,4,5)P3-binding capacity was enriched in the microsomal fraction, which contained a single class of high affinity binding sites with a Kd of 21.6 +/- 3.0 nM. The specific [3H]Ins(1,4,5)P3 binding appeared to be sharply pH dependent and was inhibited by millimolar concentrations of ATP. Upon fractionation of microsomes on sucrose density gradient there was a clearcut separation of the Ins(1,4,5)P3 receptor-containing fractions from those enriched in specific endoplasmic reticulum markers such as sulfatase C activity or RNA content. The microsomes enriched in Ins(1,4,5)P3-binding sites were of lower density than the endoplasmic reticulum and co-purified partly with the plasma membrane. In addition, Ins(1,4,5)P3-sensitive 45Ca2+ uptake into the microsomes was maximal in the lighter fractions. This distinction between Ins(1,4,5)P3-binding sites and endoplasmic reticulum-derived microsomes was confirmed upon fractionation according to their electrophoretic mobilities by free flow electrophoresis. These results indicate that in adrenal cortical cells, the source of Ca2+ mobilized by Ins(1,4,5)P3 upon stimulation with an agonist is not located in the endoplasmic reticulum. Our data support the hypothesis that a specialized vesicular organelle, distinct from endoplasmic reticulum and in close apposition with the plasma membrane, is involved in intracellular Ca2+ homeostasis.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
