Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun 20;207(4):695-717.
doi: 10.1016/0022-2836(89)90238-6.

Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity

Affiliations

Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity

E Yagil et al. J Mol Biol. .

Abstract

The temperate bacteriophage HK022, like its relative lambda, inserts its chromosome into a specific site in the bacterial chromosome during lysogenization and excises it after induction. However, we find that the recombinational specificities of the two phages differ: they use different bacterial sites, and neither promotes efficient insertion or excision of the other phage chromosome. In order to determine the basis for this difference in specificity, we sequenced the HK022 elements that are involved in insertion and excision, and compared them to the corresponding lambda elements. The location, orientation, size and overall arrangement of the int and xis genes and the phage attachment sites are nearly identical in the two genomes, as is common for other functionally related elements in lambdoid phages. The Xis proteins of the two phages are functionally interchangeable, and their predicted amino acid sequences differ by but one residue. In contrast, the two Int proteins are not functionally interchangeable, and their sequences, although similar, differ at many positions. These sequence differences are not uniformly distributed: the amino-terminal 55 residues are completely conserved, but the remaining 302 show a pattern of differences interspersed with identities and conservative changes. These findings imply that the specificity difference between HK022 and lambda site-specific recombination is a consequence of the inability of the respective Int proteins to recognize pairs of heterologous attachment sites. The two phage attachment sites are remarkably similar, especially the two "arm" segments, which in lambda contain binding sites for Int, Xis and integration host factor. They are less similar in the segment between the two arms, which in lambda contains the points of recombinational strand exchange and a second class of binding site for Int protein (the "core-type" sites). The two bacterial attachment sites are quite different, although both have a short stretch of perfect homology with their respective phage partners at the points of strand exchange. We propose that the two Int proteins recognize similar or identical sites in the arms of their cognate attachment sites, and that differences in binding or action at the core-type sites is responsible for the divergent specificities. Genetic experiments and sequence comparisons suggest that both proteins recognize different but overlapping families of core-type sites, and that divergence in specificity has been achieved by an alternating succession of small, mutually compatible changes in protein and site.

PubMed Disclaimer

Publication types

LinkOut - more resources