flowCL: ontology-based cell population labelling in flow cytometry
- PMID: 25481008
- PMCID: PMC4393520
- DOI: 10.1093/bioinformatics/btu807
flowCL: ontology-based cell population labelling in flow cytometry
Abstract
Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources.
Results: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case.
Conclusion: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types.
Availability and implementation: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html).
Contact: rbrinkman@bccrc.ca
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Figures

Similar articles
-
flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification.Bioinformatics. 2015 Feb 15;31(4):606-7. doi: 10.1093/bioinformatics/btu677. Epub 2014 Oct 16. Bioinformatics. 2015. PMID: 25378466 Free PMC article.
-
DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.Bioinformatics. 2015 Feb 15;31(4):608-9. doi: 10.1093/bioinformatics/btu684. Epub 2014 Oct 17. Bioinformatics. 2015. PMID: 25677125
-
ggCyto: next generation open-source visualization software for cytometry.Bioinformatics. 2018 Nov 15;34(22):3951-3953. doi: 10.1093/bioinformatics/bty441. Bioinformatics. 2018. PMID: 29868771 Free PMC article.
-
spicyR: spatial analysis of in situ cytometry data in R.Bioinformatics. 2022 May 26;38(11):3099-3105. doi: 10.1093/bioinformatics/btac268. Bioinformatics. 2022. PMID: 35438129 Free PMC article. Review.
-
Flow cytometry data analysis: Recent tools and algorithms.Int J Lab Hematol. 2019 May;41 Suppl 1:56-62. doi: 10.1111/ijlh.13016. Int J Lab Hematol. 2019. PMID: 31069980 Review.
Cited by
-
CytoPheno: Automated descriptive cell type naming in flow and mass cytometry.bioRxiv [Preprint]. 2025 Mar 14:2025.03.11.639902. doi: 10.1101/2025.03.11.639902. bioRxiv. 2025. Update in: Sci Rep. 2025 Jul 23;15(1):26750. doi: 10.1038/s41598-025-12153-w. PMID: 40161808 Free PMC article. Updated. Preprint.
-
An ontology for representing hematologic malignancies: the cancer cell ontology.BMC Bioinformatics. 2019 Apr 25;20(Suppl 5):181. doi: 10.1186/s12859-019-2722-8. BMC Bioinformatics. 2019. PMID: 31272372 Free PMC article.
-
Cell type discovery and representation in the era of high-content single cell phenotyping.BMC Bioinformatics. 2017 Dec 21;18(Suppl 17):559. doi: 10.1186/s12859-017-1977-1. BMC Bioinformatics. 2017. PMID: 29322913 Free PMC article.
-
Data-Driven Flow Cytometry Analysis.Methods Mol Biol. 2019;1989:245-265. doi: 10.1007/978-1-4939-9454-0_16. Methods Mol Biol. 2019. PMID: 31077110 Free PMC article. Review.
-
Transcriptional and Functional Programming of Decidual Innate Lymphoid Cells.Front Immunol. 2020 Jan 24;10:3065. doi: 10.3389/fimmu.2019.03065. eCollection 2019. Front Immunol. 2020. PMID: 32038619 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases