Reprogramming during epithelial to mesenchymal transition under the control of TGFβ
- PMID: 25482613
- PMCID: PMC4594534
- DOI: 10.4161/19336918.2014.983794
Reprogramming during epithelial to mesenchymal transition under the control of TGFβ
Abstract
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.
Keywords: BMP, bone morphogenetic protein; CSC, cancer stem cell; DNMT, DNA methyltransferase; EMT, epithelial-mesenchymal transition; FGF, fibroblast growth factor; HDAC, histone deacetylase; MAPK, mitogen activated protein kinase; MET, mesenchymal-epithelial transition; PDGF, platelet derived growth factor; PRC, polycomb repressive complex; TF, transcription factor; TGFβ; bHLH, basic helix-loop-helix; epithelial-mesenchymal transition; lncRNA, long non-coding RNA; mTORC, mammalian target of rapamycin complex; miRNA, micro-RNA; signal transduction; transforming growth factor β; transforming growth factor β.; tumor invasiveness.
Figures

Similar articles
-
TGFβ and matrix-regulated epithelial to mesenchymal transition.Biochim Biophys Acta. 2014 Aug;1840(8):2621-34. doi: 10.1016/j.bbagen.2014.02.004. Epub 2014 Feb 18. Biochim Biophys Acta. 2014. PMID: 24561266 Review.
-
Discovery of a natural small-molecule compound that suppresses tumor EMT, stemness and metastasis by inhibiting TGFβ/BMP signaling in triple-negative breast cancer.J Exp Clin Cancer Res. 2019 Mar 21;38(1):134. doi: 10.1186/s13046-019-1130-2. J Exp Clin Cancer Res. 2019. PMID: 30898152 Free PMC article.
-
Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia.J Biol Chem. 2015 Mar 13;290(11):6857-67. doi: 10.1074/jbc.M114.610915. Epub 2015 Jan 20. J Biol Chem. 2015. PMID: 25605728 Free PMC article.
-
Regulation of EMT by TGFβ in cancer.FEBS Lett. 2012 Jul 4;586(14):1959-70. doi: 10.1016/j.febslet.2012.02.037. Epub 2012 Feb 28. FEBS Lett. 2012. PMID: 22710176 Review.
-
Induction of epithelial-mesenchymal transition by transforming growth factor β.Semin Cancer Biol. 2012 Oct;22(5-6):446-54. doi: 10.1016/j.semcancer.2012.04.002. Epub 2012 Apr 23. Semin Cancer Biol. 2012. PMID: 22548724 Review.
Cited by
-
Silencing of Prrx1b suppresses cellular proliferation, migration, invasion and epithelial-mesenchymal transition in triple-negative breast cancer.J Cell Mol Med. 2016 Sep;20(9):1640-50. doi: 10.1111/jcmm.12856. Epub 2016 Mar 29. J Cell Mol Med. 2016. Retraction in: J Cell Mol Med. 2024 Apr;28(8):e18312. doi: 10.1111/jcmm.18312. PMID: 27027510 Free PMC article. Retracted.
-
Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen.Oncotarget. 2017 Jun 1;8(37):60727-60749. doi: 10.18632/oncotarget.18337. eCollection 2017 Sep 22. Oncotarget. 2017. PMID: 28977822 Free PMC article.
-
MicroRNA-362 negatively and positively regulates SMAD4 expression in TGF-β/SMAD signaling to suppress cell migration and invasion.Int J Med Sci. 2021 Feb 18;18(8):1798-1809. doi: 10.7150/ijms.50871. eCollection 2021. Int J Med Sci. 2021. PMID: 33746597 Free PMC article.
-
Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress.Br J Pharmacol. 2019 Jul;176(14):2402-2415. doi: 10.1111/bph.14605. Epub 2019 Mar 18. Br J Pharmacol. 2019. PMID: 30714124 Free PMC article. Review.
-
Progesterone prevents epithelial-mesenchymal transition of ovine amniotic epithelial cells and enhances their immunomodulatory properties.Sci Rep. 2017 Jun 19;7(1):3761. doi: 10.1038/s41598-017-03908-1. Sci Rep. 2017. PMID: 28630448 Free PMC article.
References
-
- Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5):871-90; PMID:19945376; http://dx.doi.org/10.1016/j.cell.2009.11.007 - DOI - PubMed
-
- Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 2003; 15(6):753-62; PMID:14644202; http://dx.doi.org/10.1016/j.ceb.2003.10.016 - DOI - PMC - PubMed
-
- Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154(1):8-20; PMID:8714286; http://dx.doi.org/10.1159/000147748 - DOI - PubMed
-
- Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, et al. . Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14(1):79-89; PMID:18598946; http://dx.doi.org/10.1016/j.ccr.2008.06.005 - DOI - PubMed
-
- Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. . The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4):704-15; PMID:18485877; http://dx.doi.org/10.1016/j.cell.2008.03.027 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous