The role of K₂p channels in anaesthesia and sleep
- PMID: 25482669
- PMCID: PMC4428837
- DOI: 10.1007/s00424-014-1654-4
The role of K₂p channels in anaesthesia and sleep
Abstract
Tandem two-pore potassium channels (K2Ps) have widespread expression in the central nervous system and periphery where they contribute to background membrane conductance. Some general anaesthetics promote the opening of some of these channels, enhancing potassium currents and thus producing a reduction in neuronal excitability that contributes to the transition to unconsciousness. Similarly, these channels may be recruited during the normal sleep-wake cycle as downstream effectors of wake-promoting neurotransmitters such as noradrenaline, histamine and acetylcholine. These transmitters promote K2P channel closure and thus an increase in neuronal excitability. Our understanding of the roles of these channels in sleep and anaesthesia has been largely informed by the study of mouse K2P knockout lines and what is currently predicted by in vitro electrophysiology and channel structure and gating.
Figures
References
-
- Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci. 2005;25:11455–11467. doi: 10.1523/JNEUROSCI.3153-05.2005. - DOI - PMC - PubMed
-
- Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 2006;25:2368–2376. doi: 10.1038/sj.emboj.7601116. - DOI - PMC - PubMed
-
- Andres-Enguix I, Caley A, Yustos R, Schumacher MA, Spanu PD, Dickinson R, Maze M, Franks NP. Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis. J Biol Chem. 2007;282:20977–20990. doi: 10.1074/jbc.M610692200. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- BB/K018159/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- G0601498/MRC_/Medical Research Council/United Kingdom
- BB/G021619/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- G021691/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- G0800399/MRC_/Medical Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
