Doubly Robust Estimation of Optimal Dynamic Treatment Regimes
- PMID: 25484995
- PMCID: PMC4245503
- DOI: 10.1007/s12561-013-9097-6
Doubly Robust Estimation of Optimal Dynamic Treatment Regimes
Abstract
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331-355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131-139, 2010) and Henderson et al. (in Biometrics 66:1192-1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins' efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189-326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation.
Keywords: Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression.
Similar articles
-
Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.Int J Biostat. 2016 May 1;12(1):233-52. doi: 10.1515/ijb-2015-0036. Int J Biostat. 2016. PMID: 27227723 Free PMC article.
-
Estimation of optimal dynamic anticoagulation regimes from observational data: a regret-based approach.Stat Med. 2006 Dec 30;25(24):4197-215. doi: 10.1002/sim.2694. Stat Med. 2006. PMID: 16981226
-
A doubly robust estimator for the Mann Whitney Wilcoxon rank sum test when applied for causal inference in observational studies.J Appl Stat. 2024 May 15;51(16):3267-3291. doi: 10.1080/02664763.2024.2346357. eCollection 2024. J Appl Stat. 2024. PMID: 39628859 Free PMC article.
-
Bayesian inference for optimal dynamic treatment regimes in practice.Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1. Int J Biostat. 2023. PMID: 37192544 Review.
-
Inference for non-regular parameters in optimal dynamic treatment regimes.Stat Methods Med Res. 2010 Jun;19(3):317-43. doi: 10.1177/0962280209105013. Epub 2009 Jul 16. Stat Methods Med Res. 2010. PMID: 19608604 Free PMC article. Review.
Cited by
-
A Data Analysis Method for Using Longitudinal Binary Outcome Data from a SMART to Compare Adaptive Interventions.Multivariate Behav Res. 2019 Sep-Oct;54(5):613-636. doi: 10.1080/00273171.2018.1558042. Epub 2019 Jan 20. Multivariate Behav Res. 2019. PMID: 30663401 Free PMC article.
-
Estimation in regret-regression using quadratic inference functions with ridge estimator.PLoS One. 2022 Jul 21;17(7):e0271542. doi: 10.1371/journal.pone.0271542. eCollection 2022. PLoS One. 2022. PMID: 35862316 Free PMC article.
-
Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen.Crit Care. 2021 Jul 12;25(1):243. doi: 10.1186/s13054-021-03682-7. Crit Care. 2021. PMID: 34253228 Free PMC article.
-
Evaluating the Effectiveness of Personalized Medicine With Software.Front Big Data. 2021 May 18;4:572532. doi: 10.3389/fdata.2021.572532. eCollection 2021. Front Big Data. 2021. PMID: 34085036 Free PMC article.
-
A scoping review of studies using observational data to optimise dynamic treatment regimens.BMC Med Res Methodol. 2021 Feb 22;21(1):39. doi: 10.1186/s12874-021-01211-2. BMC Med Res Methodol. 2021. PMID: 33618655 Free PMC article.
References
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous